Properties

Label 2-1110-1.1-c1-0-20
Degree $2$
Conductor $1110$
Sign $-1$
Analytic cond. $8.86339$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 7-s − 8-s + 9-s + 10-s + 3·11-s + 12-s − 7·13-s + 14-s − 15-s + 16-s − 3·17-s − 18-s − 19-s − 20-s − 21-s − 3·22-s − 3·23-s − 24-s + 25-s + 7·26-s + 27-s − 28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.904·11-s + 0.288·12-s − 1.94·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.727·17-s − 0.235·18-s − 0.229·19-s − 0.223·20-s − 0.218·21-s − 0.639·22-s − 0.625·23-s − 0.204·24-s + 1/5·25-s + 1.37·26-s + 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1110\)    =    \(2 \cdot 3 \cdot 5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(8.86339\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1110} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1110,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
37 \( 1 - T \)
good7 \( 1 + T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 + 7 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 + 9 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.450522607498306687968090119236, −8.684333621004023472330516339676, −7.84221328159706627567212095021, −7.07645567904147781826032226694, −6.45389914973932147961153555734, −5.00702751449632755985324181326, −3.99797501455484038740501080126, −2.89489079172251738049857586368, −1.85272157272638774204542507816, 0, 1.85272157272638774204542507816, 2.89489079172251738049857586368, 3.99797501455484038740501080126, 5.00702751449632755985324181326, 6.45389914973932147961153555734, 7.07645567904147781826032226694, 7.84221328159706627567212095021, 8.684333621004023472330516339676, 9.450522607498306687968090119236

Graph of the $Z$-function along the critical line