L(s) = 1 | + 7i·3-s + 50i·7-s + 194·9-s + 121·11-s − 380i·13-s + 1.15e3i·17-s + 1.82e3·19-s − 350·21-s + 3.59e3i·23-s + 3.05e3i·27-s − 8.03e3·29-s − 2.94e3·31-s + 847i·33-s − 6.97e3i·37-s + 2.66e3·39-s + ⋯ |
L(s) = 1 | + 0.449i·3-s + 0.385i·7-s + 0.798·9-s + 0.301·11-s − 0.623i·13-s + 0.968i·17-s + 1.15·19-s − 0.173·21-s + 1.41i·23-s + 0.807i·27-s − 1.77·29-s − 0.550·31-s + 0.135i·33-s − 0.838i·37-s + 0.280·39-s + ⋯ |
Λ(s)=(=(1100s/2ΓC(s)L(s)(−0.447−0.894i)Λ(6−s)
Λ(s)=(=(1100s/2ΓC(s+5/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
1100
= 22⋅52⋅11
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
176.422 |
Root analytic conductor: |
13.2824 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1100(749,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1100, ( :5/2), −0.447−0.894i)
|
Particular Values
L(3) |
≈ |
2.115057685 |
L(21) |
≈ |
2.115057685 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1−121T |
good | 3 | 1−7iT−243T2 |
| 7 | 1−50iT−1.68e4T2 |
| 13 | 1+380iT−3.71e5T2 |
| 17 | 1−1.15e3iT−1.41e6T2 |
| 19 | 1−1.82e3T+2.47e6T2 |
| 23 | 1−3.59e3iT−6.43e6T2 |
| 29 | 1+8.03e3T+2.05e7T2 |
| 31 | 1+2.94e3T+2.86e7T2 |
| 37 | 1+6.97e3iT−6.93e7T2 |
| 41 | 1+520T+1.15e8T2 |
| 43 | 1+2.48e3iT−1.47e8T2 |
| 47 | 1−6.92e3iT−2.29e8T2 |
| 53 | 1+1.37e4iT−4.18e8T2 |
| 59 | 1−3.17e4T+7.14e8T2 |
| 61 | 1−3.41e4T+8.44e8T2 |
| 67 | 1−6.15e4iT−1.35e9T2 |
| 71 | 1+1.49e4T+1.80e9T2 |
| 73 | 1+3.64e4iT−2.07e9T2 |
| 79 | 1−2.85e4T+3.07e9T2 |
| 83 | 1−7.74e4iT−3.93e9T2 |
| 89 | 1+3.62e4T+5.58e9T2 |
| 97 | 1−4.97e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.522555311178225235240628505380, −8.708344793092519895417178738007, −7.63125761581393574153560355830, −7.08754443631387839601495574807, −5.72518767860582419641585187946, −5.32765824077635548425516347533, −3.97351512405805675860523902094, −3.47842994481973804572668659036, −2.04793364656800932560014748981, −1.08434319231107670095343860710,
0.42611698236531113692811863463, 1.35808723449671520236525505996, 2.36835243554766557255993276927, 3.62472445142636645280562348991, 4.48033221431959045235411847088, 5.43262054418980756884997467348, 6.61232539777846507559541582022, 7.15273740425347729425782677851, 7.82610667234566693887726709428, 8.971761369428194800211218926765