Properties

Label 2-1100-5.4-c3-0-40
Degree $2$
Conductor $1100$
Sign $-0.447 + 0.894i$
Analytic cond. $64.9021$
Root an. cond. $8.05618$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5i·3-s − 26i·7-s + 2·9-s − 11·11-s − 52i·13-s + 46i·17-s + 96·19-s + 130·21-s − 27i·23-s + 145i·27-s − 16·29-s − 293·31-s − 55i·33-s − 29i·37-s + 260·39-s + ⋯
L(s)  = 1  + 0.962i·3-s − 1.40i·7-s + 0.0740·9-s − 0.301·11-s − 1.10i·13-s + 0.656i·17-s + 1.15·19-s + 1.35·21-s − 0.244i·23-s + 1.03i·27-s − 0.102·29-s − 1.69·31-s − 0.290i·33-s − 0.128i·37-s + 1.06·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1100\)    =    \(2^{2} \cdot 5^{2} \cdot 11\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(64.9021\)
Root analytic conductor: \(8.05618\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1100} (749, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1100,\ (\ :3/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8895199104\)
\(L(\frac12)\) \(\approx\) \(0.8895199104\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + 11T \)
good3 \( 1 - 5iT - 27T^{2} \)
7 \( 1 + 26iT - 343T^{2} \)
13 \( 1 + 52iT - 2.19e3T^{2} \)
17 \( 1 - 46iT - 4.91e3T^{2} \)
19 \( 1 - 96T + 6.85e3T^{2} \)
23 \( 1 + 27iT - 1.21e4T^{2} \)
29 \( 1 + 16T + 2.43e4T^{2} \)
31 \( 1 + 293T + 2.97e4T^{2} \)
37 \( 1 + 29iT - 5.06e4T^{2} \)
41 \( 1 + 472T + 6.89e4T^{2} \)
43 \( 1 - 110iT - 7.95e4T^{2} \)
47 \( 1 + 224iT - 1.03e5T^{2} \)
53 \( 1 + 754iT - 1.48e5T^{2} \)
59 \( 1 + 825T + 2.05e5T^{2} \)
61 \( 1 + 548T + 2.26e5T^{2} \)
67 \( 1 + 123iT - 3.00e5T^{2} \)
71 \( 1 - 1.00e3T + 3.57e5T^{2} \)
73 \( 1 - 1.02e3iT - 3.89e5T^{2} \)
79 \( 1 + 526T + 4.93e5T^{2} \)
83 \( 1 - 158iT - 5.71e5T^{2} \)
89 \( 1 - 1.21e3T + 7.04e5T^{2} \)
97 \( 1 + 263iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.518185590058105070734044733722, −8.353165908936486322121706033073, −7.55481787992522896901098235085, −6.84943655516385004742150709241, −5.52203741109500171206823257816, −4.84174649087024287585206980256, −3.78378945416470657303080105886, −3.30123817992819492569185438372, −1.50421869892829883906914081587, −0.21201197387554962831622601733, 1.42704223631353321758901095522, 2.21983372178225673724001671261, 3.28262386514704381172763546234, 4.73768679132738349005874899839, 5.59803717537564205586337703883, 6.44213279972702713530604033628, 7.29987845767317130264233319873, 7.912737186897536774101035289060, 9.192621601554903161167723725784, 9.269672765884826741450980508113

Graph of the $Z$-function along the critical line