L(s) = 1 | − 19.2·3-s − 67.1·7-s + 128.·9-s − 121·11-s − 504.·13-s − 984.·17-s + 281.·19-s + 1.29e3·21-s − 359.·23-s + 2.20e3·27-s − 5.02e3·29-s − 7.01e3·31-s + 2.33e3·33-s + 5.24e3·37-s + 9.72e3·39-s − 1.38e4·41-s − 2.01e4·43-s − 6.78e3·47-s − 1.22e4·49-s + 1.89e4·51-s + 2.72e4·53-s − 5.42e3·57-s + 1.90e4·59-s + 2.40e4·61-s − 8.62e3·63-s − 5.32e4·67-s + 6.91e3·69-s + ⋯ |
L(s) = 1 | − 1.23·3-s − 0.518·7-s + 0.528·9-s − 0.301·11-s − 0.828·13-s − 0.826·17-s + 0.178·19-s + 0.640·21-s − 0.141·23-s + 0.583·27-s − 1.10·29-s − 1.31·31-s + 0.372·33-s + 0.629·37-s + 1.02·39-s − 1.28·41-s − 1.66·43-s − 0.447·47-s − 0.731·49-s + 1.02·51-s + 1.33·53-s − 0.221·57-s + 0.714·59-s + 0.827·61-s − 0.273·63-s − 1.44·67-s + 0.174·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.05415318696\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.05415318696\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 + 121T \) |
good | 3 | \( 1 + 19.2T + 243T^{2} \) |
| 7 | \( 1 + 67.1T + 1.68e4T^{2} \) |
| 13 | \( 1 + 504.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 984.T + 1.41e6T^{2} \) |
| 19 | \( 1 - 281.T + 2.47e6T^{2} \) |
| 23 | \( 1 + 359.T + 6.43e6T^{2} \) |
| 29 | \( 1 + 5.02e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 7.01e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 5.24e3T + 6.93e7T^{2} \) |
| 41 | \( 1 + 1.38e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 2.01e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + 6.78e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 2.72e4T + 4.18e8T^{2} \) |
| 59 | \( 1 - 1.90e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 2.40e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 5.32e4T + 1.35e9T^{2} \) |
| 71 | \( 1 + 4.42e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 2.19e4T + 2.07e9T^{2} \) |
| 79 | \( 1 + 2.63e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 1.94e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 3.13e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 1.34e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.298340290006337428589798918492, −8.291136470761582546148896607662, −7.15944371183778560423005421704, −6.63408018892876208873281694429, −5.61821892449343446401229185138, −5.10151355734498775398768621406, −4.03709150110161677310082674211, −2.84158886262924115139477543033, −1.63115343617891681884306819159, −0.10370373012962915251877954966,
0.10370373012962915251877954966, 1.63115343617891681884306819159, 2.84158886262924115139477543033, 4.03709150110161677310082674211, 5.10151355734498775398768621406, 5.61821892449343446401229185138, 6.63408018892876208873281694429, 7.15944371183778560423005421704, 8.291136470761582546148896607662, 9.298340290006337428589798918492