| L(s) = 1 | + (0.309 + 0.951i)2-s + (1 + 0.726i)3-s + (−0.809 + 0.587i)4-s + (−0.309 + 0.951i)5-s + (−0.381 + 1.17i)6-s + (−0.309 + 0.224i)7-s + (−0.809 − 0.587i)8-s + (−0.454 − 1.40i)9-s − 0.999·10-s + (3.04 − 1.31i)11-s − 1.23·12-s + (0.190 + 0.587i)13-s + (−0.309 − 0.224i)14-s + (−1 + 0.726i)15-s + (0.309 − 0.951i)16-s + (−0.236 + 0.726i)17-s + ⋯ |
| L(s) = 1 | + (0.218 + 0.672i)2-s + (0.577 + 0.419i)3-s + (−0.404 + 0.293i)4-s + (−0.138 + 0.425i)5-s + (−0.155 + 0.479i)6-s + (−0.116 + 0.0848i)7-s + (−0.286 − 0.207i)8-s + (−0.151 − 0.466i)9-s − 0.316·10-s + (0.918 − 0.396i)11-s − 0.356·12-s + (0.0529 + 0.163i)13-s + (−0.0825 − 0.0600i)14-s + (−0.258 + 0.187i)15-s + (0.0772 − 0.237i)16-s + (−0.0572 + 0.176i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.263 - 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.263 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.994715 + 0.759476i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.994715 + 0.759476i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 5 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (-3.04 + 1.31i)T \) |
| good | 3 | \( 1 + (-1 - 0.726i)T + (0.927 + 2.85i)T^{2} \) |
| 7 | \( 1 + (0.309 - 0.224i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-0.190 - 0.587i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (0.236 - 0.726i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (5.73 + 4.16i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 6.85T + 23T^{2} \) |
| 29 | \( 1 + (2.61 - 1.90i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (0.854 + 2.62i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (4.73 - 3.44i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (3.92 + 2.85i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 4.76T + 43T^{2} \) |
| 47 | \( 1 + (-3.5 - 2.54i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-3.73 - 11.4i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (3.73 - 2.71i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (2.76 - 8.50i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 5.23T + 67T^{2} \) |
| 71 | \( 1 + (-2.70 + 8.33i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (9.47 - 6.88i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (3.23 + 9.95i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-0.708 + 2.17i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - 17.0T + 89T^{2} \) |
| 97 | \( 1 + (3.70 + 11.4i)T + (-78.4 + 57.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.15324269718339693571359835983, −13.12902346154607485291213849851, −11.87510989411087655579837240890, −10.69053749783921219598275728286, −9.181592322698270081709106631142, −8.689692898141300890779335872969, −7.09085273254919598748690297912, −6.15279257623887221919274836612, −4.38616943913952582745886273440, −3.16386272298179551894020807461,
1.88024641050120290946512859784, 3.63118161087949276640279258260, 5.08441051044528265069281701914, 6.79689793270003352740763166708, 8.234077072523460416645200531643, 9.095124768403709638293399825351, 10.36571270774770259694141174000, 11.48934099653248746502709963391, 12.60097075157440624879704782671, 13.24689497388653958260232538794