Properties

Label 2-1088-1.1-c3-0-51
Degree $2$
Conductor $1088$
Sign $1$
Analytic cond. $64.1940$
Root an. cond. $8.01212$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.95·3-s + 20.3·5-s + 22.2·7-s − 18.2·9-s + 41.8·11-s + 35.3·13-s − 59.9·15-s − 17·17-s + 67.1·19-s − 65.7·21-s − 64.6·23-s + 287.·25-s + 133.·27-s + 83.0·29-s + 239.·31-s − 123.·33-s + 452.·35-s + 49.0·37-s − 104.·39-s − 225.·41-s + 83.4·43-s − 371.·45-s − 54.9·47-s + 153.·49-s + 50.1·51-s − 641.·53-s + 850.·55-s + ⋯
L(s)  = 1  − 0.567·3-s + 1.81·5-s + 1.20·7-s − 0.677·9-s + 1.14·11-s + 0.753·13-s − 1.03·15-s − 0.242·17-s + 0.810·19-s − 0.683·21-s − 0.585·23-s + 2.30·25-s + 0.952·27-s + 0.531·29-s + 1.38·31-s − 0.651·33-s + 2.18·35-s + 0.217·37-s − 0.428·39-s − 0.860·41-s + 0.295·43-s − 1.23·45-s − 0.170·47-s + 0.448·49-s + 0.137·51-s − 1.66·53-s + 2.08·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1088 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1088 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1088\)    =    \(2^{6} \cdot 17\)
Sign: $1$
Analytic conductor: \(64.1940\)
Root analytic conductor: \(8.01212\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1088,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.274956436\)
\(L(\frac12)\) \(\approx\) \(3.274956436\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 + 17T \)
good3 \( 1 + 2.95T + 27T^{2} \)
5 \( 1 - 20.3T + 125T^{2} \)
7 \( 1 - 22.2T + 343T^{2} \)
11 \( 1 - 41.8T + 1.33e3T^{2} \)
13 \( 1 - 35.3T + 2.19e3T^{2} \)
19 \( 1 - 67.1T + 6.85e3T^{2} \)
23 \( 1 + 64.6T + 1.21e4T^{2} \)
29 \( 1 - 83.0T + 2.43e4T^{2} \)
31 \( 1 - 239.T + 2.97e4T^{2} \)
37 \( 1 - 49.0T + 5.06e4T^{2} \)
41 \( 1 + 225.T + 6.89e4T^{2} \)
43 \( 1 - 83.4T + 7.95e4T^{2} \)
47 \( 1 + 54.9T + 1.03e5T^{2} \)
53 \( 1 + 641.T + 1.48e5T^{2} \)
59 \( 1 + 727.T + 2.05e5T^{2} \)
61 \( 1 + 868.T + 2.26e5T^{2} \)
67 \( 1 - 1.00e3T + 3.00e5T^{2} \)
71 \( 1 - 382.T + 3.57e5T^{2} \)
73 \( 1 + 640.T + 3.89e5T^{2} \)
79 \( 1 - 19.6T + 4.93e5T^{2} \)
83 \( 1 - 619.T + 5.71e5T^{2} \)
89 \( 1 + 1.30e3T + 7.04e5T^{2} \)
97 \( 1 - 1.68e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.478408533694521351122579744504, −8.802261065250953256398746210382, −7.982254025097485328240210322756, −6.47849573828911162371111200123, −6.20276230661461461662593824194, −5.28694386814790069192733950499, −4.57834163481095131749369309968, −3.01243779693290397548034328387, −1.77647500851079694127639528585, −1.10166980664016562389211910536, 1.10166980664016562389211910536, 1.77647500851079694127639528585, 3.01243779693290397548034328387, 4.57834163481095131749369309968, 5.28694386814790069192733950499, 6.20276230661461461662593824194, 6.47849573828911162371111200123, 7.982254025097485328240210322756, 8.802261065250953256398746210382, 9.478408533694521351122579744504

Graph of the $Z$-function along the critical line