Properties

Label 2-1088-1.1-c3-0-35
Degree $2$
Conductor $1088$
Sign $1$
Analytic cond. $64.1940$
Root an. cond. $8.01212$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.63·3-s + 20.7·5-s − 0.399·7-s + 47.6·9-s − 0.469·11-s − 0.471·13-s − 179.·15-s + 17·17-s + 135.·19-s + 3.45·21-s + 40.3·23-s + 307.·25-s − 178.·27-s + 259.·29-s − 183.·31-s + 4.05·33-s − 8.30·35-s + 15.8·37-s + 4.07·39-s − 194.·41-s + 368.·43-s + 990.·45-s − 536.·47-s − 342.·49-s − 146.·51-s + 161.·53-s − 9.76·55-s + ⋯
L(s)  = 1  − 1.66·3-s + 1.85·5-s − 0.0215·7-s + 1.76·9-s − 0.0128·11-s − 0.0100·13-s − 3.09·15-s + 0.242·17-s + 1.64·19-s + 0.0358·21-s + 0.365·23-s + 2.45·25-s − 1.26·27-s + 1.66·29-s − 1.06·31-s + 0.0214·33-s − 0.0401·35-s + 0.0705·37-s + 0.0167·39-s − 0.739·41-s + 1.30·43-s + 3.28·45-s − 1.66·47-s − 0.999·49-s − 0.403·51-s + 0.418·53-s − 0.0239·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1088 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1088 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1088\)    =    \(2^{6} \cdot 17\)
Sign: $1$
Analytic conductor: \(64.1940\)
Root analytic conductor: \(8.01212\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1088,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.889260008\)
\(L(\frac12)\) \(\approx\) \(1.889260008\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 - 17T \)
good3 \( 1 + 8.63T + 27T^{2} \)
5 \( 1 - 20.7T + 125T^{2} \)
7 \( 1 + 0.399T + 343T^{2} \)
11 \( 1 + 0.469T + 1.33e3T^{2} \)
13 \( 1 + 0.471T + 2.19e3T^{2} \)
19 \( 1 - 135.T + 6.85e3T^{2} \)
23 \( 1 - 40.3T + 1.21e4T^{2} \)
29 \( 1 - 259.T + 2.43e4T^{2} \)
31 \( 1 + 183.T + 2.97e4T^{2} \)
37 \( 1 - 15.8T + 5.06e4T^{2} \)
41 \( 1 + 194.T + 6.89e4T^{2} \)
43 \( 1 - 368.T + 7.95e4T^{2} \)
47 \( 1 + 536.T + 1.03e5T^{2} \)
53 \( 1 - 161.T + 1.48e5T^{2} \)
59 \( 1 + 645.T + 2.05e5T^{2} \)
61 \( 1 - 76.1T + 2.26e5T^{2} \)
67 \( 1 + 606.T + 3.00e5T^{2} \)
71 \( 1 - 8.25T + 3.57e5T^{2} \)
73 \( 1 - 98.5T + 3.89e5T^{2} \)
79 \( 1 - 509.T + 4.93e5T^{2} \)
83 \( 1 - 1.04e3T + 5.71e5T^{2} \)
89 \( 1 - 466.T + 7.04e5T^{2} \)
97 \( 1 - 1.42e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.749022748354097700965142772726, −9.020861057185796844486914341705, −7.53494582616011762178010830619, −6.54570171413792484388605950035, −6.09791137868116665601578380974, −5.23455380098699411276663774693, −4.87287904900708562735896063541, −3.08104281888826524820149296859, −1.68211944138909016699579079016, −0.841976856157492148025288902168, 0.841976856157492148025288902168, 1.68211944138909016699579079016, 3.08104281888826524820149296859, 4.87287904900708562735896063541, 5.23455380098699411276663774693, 6.09791137868116665601578380974, 6.54570171413792484388605950035, 7.53494582616011762178010830619, 9.020861057185796844486914341705, 9.749022748354097700965142772726

Graph of the $Z$-function along the critical line