Properties

Label 2-1088-1.1-c3-0-3
Degree $2$
Conductor $1088$
Sign $1$
Analytic cond. $64.1940$
Root an. cond. $8.01212$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.605·3-s − 12.4·5-s − 0.605·7-s − 26.6·9-s − 57.0·11-s − 18.4·13-s + 7.52·15-s + 17·17-s − 68.4·19-s + 0.366·21-s − 53.4·23-s + 29.3·25-s + 32.4·27-s − 141.·29-s − 125.·31-s + 34.5·33-s + 7.52·35-s − 83.4·37-s + 11.1·39-s + 519.·41-s − 374.·43-s + 330.·45-s + 561.·47-s − 342.·49-s − 10.2·51-s − 562.·53-s + 709.·55-s + ⋯
L(s)  = 1  − 0.116·3-s − 1.11·5-s − 0.0326·7-s − 0.986·9-s − 1.56·11-s − 0.394·13-s + 0.129·15-s + 0.242·17-s − 0.826·19-s + 0.00381·21-s − 0.484·23-s + 0.234·25-s + 0.231·27-s − 0.908·29-s − 0.729·31-s + 0.182·33-s + 0.0363·35-s − 0.370·37-s + 0.0459·39-s + 1.97·41-s − 1.32·43-s + 1.09·45-s + 1.74·47-s − 0.998·49-s − 0.0282·51-s − 1.45·53-s + 1.73·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1088 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1088 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1088\)    =    \(2^{6} \cdot 17\)
Sign: $1$
Analytic conductor: \(64.1940\)
Root analytic conductor: \(8.01212\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1088,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3106325314\)
\(L(\frac12)\) \(\approx\) \(0.3106325314\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 - 17T \)
good3 \( 1 + 0.605T + 27T^{2} \)
5 \( 1 + 12.4T + 125T^{2} \)
7 \( 1 + 0.605T + 343T^{2} \)
11 \( 1 + 57.0T + 1.33e3T^{2} \)
13 \( 1 + 18.4T + 2.19e3T^{2} \)
19 \( 1 + 68.4T + 6.85e3T^{2} \)
23 \( 1 + 53.4T + 1.21e4T^{2} \)
29 \( 1 + 141.T + 2.43e4T^{2} \)
31 \( 1 + 125.T + 2.97e4T^{2} \)
37 \( 1 + 83.4T + 5.06e4T^{2} \)
41 \( 1 - 519.T + 6.89e4T^{2} \)
43 \( 1 + 374.T + 7.95e4T^{2} \)
47 \( 1 - 561.T + 1.03e5T^{2} \)
53 \( 1 + 562.T + 1.48e5T^{2} \)
59 \( 1 - 246.T + 2.05e5T^{2} \)
61 \( 1 - 291.T + 2.26e5T^{2} \)
67 \( 1 - 729.T + 3.00e5T^{2} \)
71 \( 1 + 911.T + 3.57e5T^{2} \)
73 \( 1 + 644.T + 3.89e5T^{2} \)
79 \( 1 - 533.T + 4.93e5T^{2} \)
83 \( 1 - 51.9T + 5.71e5T^{2} \)
89 \( 1 + 1.02e3T + 7.04e5T^{2} \)
97 \( 1 - 178.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.457347829340439189735513390868, −8.425964531736240783778075030482, −7.898557425107373525999776339309, −7.22466927321426147536114887113, −5.95588258068010235239491502151, −5.23161921104186510507664117838, −4.20703127715599649448053499044, −3.19674883982263547998859420490, −2.23433172029081943665123173484, −0.27220135418071016281284152171, 0.27220135418071016281284152171, 2.23433172029081943665123173484, 3.19674883982263547998859420490, 4.20703127715599649448053499044, 5.23161921104186510507664117838, 5.95588258068010235239491502151, 7.22466927321426147536114887113, 7.898557425107373525999776339309, 8.425964531736240783778075030482, 9.457347829340439189735513390868

Graph of the $Z$-function along the critical line