Properties

Label 2-1088-1.1-c3-0-29
Degree $2$
Conductor $1088$
Sign $1$
Analytic cond. $64.1940$
Root an. cond. $8.01212$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.40·3-s + 9.23·5-s − 2.17·7-s + 2.26·9-s + 51.8·11-s − 10.4·13-s − 49.9·15-s + 17·17-s + 122.·19-s + 11.7·21-s − 48.3·23-s − 39.6·25-s + 133.·27-s − 160.·29-s − 12.2·31-s − 280.·33-s − 20.0·35-s + 103.·37-s + 56.3·39-s + 113.·41-s + 76.1·43-s + 20.8·45-s + 289.·47-s − 338.·49-s − 91.9·51-s − 447.·53-s + 479.·55-s + ⋯
L(s)  = 1  − 1.04·3-s + 0.826·5-s − 0.117·7-s + 0.0837·9-s + 1.42·11-s − 0.222·13-s − 0.860·15-s + 0.242·17-s + 1.47·19-s + 0.121·21-s − 0.438·23-s − 0.317·25-s + 0.953·27-s − 1.02·29-s − 0.0708·31-s − 1.48·33-s − 0.0968·35-s + 0.458·37-s + 0.231·39-s + 0.431·41-s + 0.270·43-s + 0.0692·45-s + 0.899·47-s − 0.986·49-s − 0.252·51-s − 1.15·53-s + 1.17·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1088 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1088 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1088\)    =    \(2^{6} \cdot 17\)
Sign: $1$
Analytic conductor: \(64.1940\)
Root analytic conductor: \(8.01212\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1088,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.710181740\)
\(L(\frac12)\) \(\approx\) \(1.710181740\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 - 17T \)
good3 \( 1 + 5.40T + 27T^{2} \)
5 \( 1 - 9.23T + 125T^{2} \)
7 \( 1 + 2.17T + 343T^{2} \)
11 \( 1 - 51.8T + 1.33e3T^{2} \)
13 \( 1 + 10.4T + 2.19e3T^{2} \)
19 \( 1 - 122.T + 6.85e3T^{2} \)
23 \( 1 + 48.3T + 1.21e4T^{2} \)
29 \( 1 + 160.T + 2.43e4T^{2} \)
31 \( 1 + 12.2T + 2.97e4T^{2} \)
37 \( 1 - 103.T + 5.06e4T^{2} \)
41 \( 1 - 113.T + 6.89e4T^{2} \)
43 \( 1 - 76.1T + 7.95e4T^{2} \)
47 \( 1 - 289.T + 1.03e5T^{2} \)
53 \( 1 + 447.T + 1.48e5T^{2} \)
59 \( 1 - 480.T + 2.05e5T^{2} \)
61 \( 1 - 308.T + 2.26e5T^{2} \)
67 \( 1 + 56.4T + 3.00e5T^{2} \)
71 \( 1 + 332.T + 3.57e5T^{2} \)
73 \( 1 - 35.2T + 3.89e5T^{2} \)
79 \( 1 + 1.26e3T + 4.93e5T^{2} \)
83 \( 1 + 471.T + 5.71e5T^{2} \)
89 \( 1 - 559.T + 7.04e5T^{2} \)
97 \( 1 - 869.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.598164972671707101592130228111, −8.934139291139403617239710809432, −7.65498562994278175669243484205, −6.76195766429063034288246823498, −5.92346349569100770697181741457, −5.52170112609703579109032179844, −4.38694856053917830908231077548, −3.23681171997058057222987907533, −1.80472432553858254570618460014, −0.74687511216339550064586603789, 0.74687511216339550064586603789, 1.80472432553858254570618460014, 3.23681171997058057222987907533, 4.38694856053917830908231077548, 5.52170112609703579109032179844, 5.92346349569100770697181741457, 6.76195766429063034288246823498, 7.65498562994278175669243484205, 8.934139291139403617239710809432, 9.598164972671707101592130228111

Graph of the $Z$-function along the critical line