Properties

Label 2-1083-1.1-c5-0-56
Degree $2$
Conductor $1083$
Sign $1$
Analytic cond. $173.695$
Root an. cond. $13.1793$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 9·3-s − 28·4-s − 98·5-s − 18·6-s + 240·7-s − 120·8-s + 81·9-s − 196·10-s + 336·11-s + 252·12-s − 342·13-s + 480·14-s + 882·15-s + 656·16-s − 6·17-s + 162·18-s + 2.74e3·20-s − 2.16e3·21-s + 672·22-s + 2.83e3·23-s + 1.08e3·24-s + 6.47e3·25-s − 684·26-s − 729·27-s − 6.72e3·28-s + 5.90e3·29-s + ⋯
L(s)  = 1  + 0.353·2-s − 0.577·3-s − 7/8·4-s − 1.75·5-s − 0.204·6-s + 1.85·7-s − 0.662·8-s + 1/3·9-s − 0.619·10-s + 0.837·11-s + 0.505·12-s − 0.561·13-s + 0.654·14-s + 1.01·15-s + 0.640·16-s − 0.00503·17-s + 0.117·18-s + 1.53·20-s − 1.06·21-s + 0.296·22-s + 1.11·23-s + 0.382·24-s + 2.07·25-s − 0.198·26-s − 0.192·27-s − 1.61·28-s + 1.30·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1083\)    =    \(3 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(173.695\)
Root analytic conductor: \(13.1793\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1083,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.238458613\)
\(L(\frac12)\) \(\approx\) \(1.238458613\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p^{2} T \)
19 \( 1 \)
good2 \( 1 - p T + p^{5} T^{2} \)
5 \( 1 + 98 T + p^{5} T^{2} \)
7 \( 1 - 240 T + p^{5} T^{2} \)
11 \( 1 - 336 T + p^{5} T^{2} \)
13 \( 1 + 342 T + p^{5} T^{2} \)
17 \( 1 + 6 T + p^{5} T^{2} \)
23 \( 1 - 2836 T + p^{5} T^{2} \)
29 \( 1 - 5902 T + p^{5} T^{2} \)
31 \( 1 + 2744 T + p^{5} T^{2} \)
37 \( 1 + 13670 T + p^{5} T^{2} \)
41 \( 1 + 10990 T + p^{5} T^{2} \)
43 \( 1 + 4996 T + p^{5} T^{2} \)
47 \( 1 + 17124 T + p^{5} T^{2} \)
53 \( 1 - 4470 T + p^{5} T^{2} \)
59 \( 1 + 26292 T + p^{5} T^{2} \)
61 \( 1 - 29134 T + p^{5} T^{2} \)
67 \( 1 - 42052 T + p^{5} T^{2} \)
71 \( 1 - 26112 T + p^{5} T^{2} \)
73 \( 1 + 49046 T + p^{5} T^{2} \)
79 \( 1 + 79056 T + p^{5} T^{2} \)
83 \( 1 - 9472 T + p^{5} T^{2} \)
89 \( 1 + 82894 T + p^{5} T^{2} \)
97 \( 1 + 39850 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.703626824633694738070825852547, −8.464668174511156418493027699271, −7.52475269541324408661323369301, −6.79171862315968840480457350949, −5.22685908809963636955742983833, −4.80322911540794895505122688570, −4.17692089018126039515936737384, −3.28575344448757788678193431147, −1.44899326703668920145017117702, −0.51672299124882045478843576576, 0.51672299124882045478843576576, 1.44899326703668920145017117702, 3.28575344448757788678193431147, 4.17692089018126039515936737384, 4.80322911540794895505122688570, 5.22685908809963636955742983833, 6.79171862315968840480457350949, 7.52475269541324408661323369301, 8.464668174511156418493027699271, 8.703626824633694738070825852547

Graph of the $Z$-function along the critical line