Properties

Label 2-1083-1.1-c1-0-1
Degree $2$
Conductor $1083$
Sign $1$
Analytic cond. $8.64779$
Root an. cond. $2.94071$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 4-s − 2·5-s + 6-s + 3·8-s + 9-s + 2·10-s + 12-s − 6·13-s + 2·15-s − 16-s − 6·17-s − 18-s + 2·20-s + 4·23-s − 3·24-s − 25-s + 6·26-s − 27-s − 2·29-s − 2·30-s − 8·31-s − 5·32-s + 6·34-s − 36-s + 10·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.894·5-s + 0.408·6-s + 1.06·8-s + 1/3·9-s + 0.632·10-s + 0.288·12-s − 1.66·13-s + 0.516·15-s − 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.447·20-s + 0.834·23-s − 0.612·24-s − 1/5·25-s + 1.17·26-s − 0.192·27-s − 0.371·29-s − 0.365·30-s − 1.43·31-s − 0.883·32-s + 1.02·34-s − 1/6·36-s + 1.64·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1083 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1083\)    =    \(3 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(8.64779\)
Root analytic conductor: \(2.94071\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1083,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3450518079\)
\(L(\frac12)\) \(\approx\) \(0.3450518079\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
19 \( 1 \)
good2 \( 1 + T + p T^{2} \)
5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.676043766169960369886673569255, −9.211204361001959275319801150204, −8.204224733564106943471891272665, −7.43259308735181576062150293394, −6.88281746236137995334549719629, −5.42974656732833448500123753190, −4.62864849822679992384179631378, −3.91841567788800315953565193679, −2.25179019930198933577153857080, −0.49711700208122723907813480784, 0.49711700208122723907813480784, 2.25179019930198933577153857080, 3.91841567788800315953565193679, 4.62864849822679992384179631378, 5.42974656732833448500123753190, 6.88281746236137995334549719629, 7.43259308735181576062150293394, 8.204224733564106943471891272665, 9.211204361001959275319801150204, 9.676043766169960369886673569255

Graph of the $Z$-function along the critical line