L(s) = 1 | + (−0.5 − 0.866i)5-s + (−1.72 + 2.98i)7-s + 2·17-s − 6.89·19-s + (−3.72 − 6.45i)23-s + (−0.499 + 0.866i)25-s + (−0.949 + 1.64i)29-s + (−0.550 − 0.953i)31-s + 3.44·35-s − 6·37-s + (−4.94 − 8.57i)41-s + (−5.89 + 10.2i)43-s + (−4.72 + 8.18i)47-s + (−2.44 − 4.24i)49-s − 7.79·53-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (−0.651 + 1.12i)7-s + 0.485·17-s − 1.58·19-s + (−0.776 − 1.34i)23-s + (−0.0999 + 0.173i)25-s + (−0.176 + 0.305i)29-s + (−0.0988 − 0.171i)31-s + 0.583·35-s − 0.986·37-s + (−0.772 − 1.33i)41-s + (−0.899 + 1.55i)43-s + (−0.689 + 1.19i)47-s + (−0.349 − 0.606i)49-s − 1.07·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.996 - 0.0825i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.996 - 0.0825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1436763461\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1436763461\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + (1.72 - 2.98i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 + 6.89T + 19T^{2} \) |
| 23 | \( 1 + (3.72 + 6.45i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.949 - 1.64i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.550 + 0.953i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 6T + 37T^{2} \) |
| 41 | \( 1 + (4.94 + 8.57i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.89 - 10.2i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (4.72 - 8.18i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 7.79T + 53T^{2} \) |
| 59 | \( 1 + (0.550 + 0.953i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.5 + 2.59i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.62 - 11.4i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.79T + 71T^{2} \) |
| 73 | \( 1 - 13.7T + 73T^{2} \) |
| 79 | \( 1 + (-3.44 + 5.97i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.72 - 4.71i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 2.79T + 89T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19794261469485419541695826539, −9.382594719130161025226890167805, −8.581531421442103070293117972514, −8.087122211417057906801208505941, −6.73138337424949266241157975719, −6.11955539230789093602824617567, −5.16230639874031826229770460040, −4.16654922699815692333691593001, −3.01733042177730785109238896502, −1.93330422536802253890014374955,
0.05979139259002987583721154762, 1.83343945285897842594516457148, 3.38480871880939296899959248258, 3.91045233589265619263917539167, 5.11337154680617306866542993463, 6.31577908838859483460534078229, 6.90738084165821278728894796759, 7.76077103819260610863682643708, 8.554828269778591653399234291802, 9.749430213815210710513578338762