L(s) = 1 | + 2-s + 4-s + 5-s + 8-s + 10-s − 11-s − 13-s + 16-s − 17-s + 20-s − 22-s − 23-s + 25-s − 26-s − 29-s − 31-s + 32-s − 34-s + 2·37-s + 40-s − 43-s − 44-s − 46-s − 47-s + 49-s + 50-s − 52-s + ⋯ |
L(s) = 1 | + 2-s + 4-s + 5-s + 8-s + 10-s − 11-s − 13-s + 16-s − 17-s + 20-s − 22-s − 23-s + 25-s − 26-s − 29-s − 31-s + 32-s − 34-s + 2·37-s + 40-s − 43-s − 44-s − 46-s − 47-s + 49-s + 50-s − 52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.029087235\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.029087235\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
good | 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( 1 + T + T^{2} \) |
| 13 | \( 1 + T + T^{2} \) |
| 17 | \( 1 + T + T^{2} \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( 1 + T + T^{2} \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( ( 1 - T )^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + T + T^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 - T )^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11510416606627088358244669875, −9.545598095746438387806881667886, −8.268773375211235750157448063413, −7.35890502773188930887353739105, −6.55198540987567564051790528481, −5.62222284824462032923816507309, −5.05860341721905637648442373442, −4.01610762671830424942867439743, −2.63496433449468385519059425265, −2.03254931732106345920492704682,
2.03254931732106345920492704682, 2.63496433449468385519059425265, 4.01610762671830424942867439743, 5.05860341721905637648442373442, 5.62222284824462032923816507309, 6.55198540987567564051790528481, 7.35890502773188930887353739105, 8.268773375211235750157448063413, 9.545598095746438387806881667886, 10.11510416606627088358244669875