Properties

Label 2-1080-120.29-c0-0-5
Degree $2$
Conductor $1080$
Sign $1$
Analytic cond. $0.538990$
Root an. cond. $0.734159$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 8-s − 10-s − 11-s + 13-s + 16-s + 17-s + 20-s + 22-s + 23-s + 25-s − 26-s − 29-s − 31-s − 32-s − 34-s − 2·37-s − 40-s + 43-s − 44-s − 46-s + 47-s + 49-s − 50-s + 52-s + ⋯
L(s)  = 1  − 2-s + 4-s + 5-s − 8-s − 10-s − 11-s + 13-s + 16-s + 17-s + 20-s + 22-s + 23-s + 25-s − 26-s − 29-s − 31-s − 32-s − 34-s − 2·37-s − 40-s + 43-s − 44-s − 46-s + 47-s + 49-s − 50-s + 52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1080\)    =    \(2^{3} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(0.538990\)
Root analytic conductor: \(0.734159\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1080} (269, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1080,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8158052671\)
\(L(\frac12)\) \(\approx\) \(0.8158052671\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( ( 1 - T )( 1 + T ) \)
11 \( 1 + T + T^{2} \)
13 \( 1 - T + T^{2} \)
17 \( 1 - T + T^{2} \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( 1 - T + T^{2} \)
29 \( 1 + T + T^{2} \)
31 \( 1 + T + T^{2} \)
37 \( ( 1 + T )^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( 1 - T + T^{2} \)
47 \( 1 - T + T^{2} \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )^{2} \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 + T )^{2} \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( 1 + T + T^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19282562589171853821669445801, −9.106378883147068741149647576147, −8.725112693189124974195050043051, −7.59783446101209165248872931208, −6.95498847886279270047006603981, −5.76033768967318372085066991085, −5.41207301834235623883454487780, −3.53832824393848381493904609995, −2.48320356070974105531070360778, −1.34146234921306693595623868450, 1.34146234921306693595623868450, 2.48320356070974105531070360778, 3.53832824393848381493904609995, 5.41207301834235623883454487780, 5.76033768967318372085066991085, 6.95498847886279270047006603981, 7.59783446101209165248872931208, 8.725112693189124974195050043051, 9.106378883147068741149647576147, 10.19282562589171853821669445801

Graph of the $Z$-function along the critical line