Properties

Label 2-1080-1.1-c3-0-43
Degree $2$
Conductor $1080$
Sign $-1$
Analytic cond. $63.7220$
Root an. cond. $7.98261$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·5-s + 26.8·7-s − 30.8·11-s + 32.8·13-s − 71.5·17-s − 49.3·19-s − 72.5·23-s + 25·25-s − 54.4·29-s + 146.·31-s − 134.·35-s − 65.6·37-s − 148.·41-s − 453.·43-s + 171.·47-s + 376.·49-s + 440.·53-s + 154.·55-s + 128.·59-s + 395.·61-s − 164.·65-s − 380.·67-s − 490.·71-s − 288.·73-s − 827.·77-s − 395.·79-s − 845.·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.44·7-s − 0.845·11-s + 0.701·13-s − 1.02·17-s − 0.595·19-s − 0.657·23-s + 0.200·25-s − 0.348·29-s + 0.850·31-s − 0.647·35-s − 0.291·37-s − 0.566·41-s − 1.60·43-s + 0.531·47-s + 1.09·49-s + 1.14·53-s + 0.378·55-s + 0.282·59-s + 0.830·61-s − 0.313·65-s − 0.694·67-s − 0.819·71-s − 0.462·73-s − 1.22·77-s − 0.563·79-s − 1.11·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1080\)    =    \(2^{3} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(63.7220\)
Root analytic conductor: \(7.98261\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1080,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 5T \)
good7 \( 1 - 26.8T + 343T^{2} \)
11 \( 1 + 30.8T + 1.33e3T^{2} \)
13 \( 1 - 32.8T + 2.19e3T^{2} \)
17 \( 1 + 71.5T + 4.91e3T^{2} \)
19 \( 1 + 49.3T + 6.85e3T^{2} \)
23 \( 1 + 72.5T + 1.21e4T^{2} \)
29 \( 1 + 54.4T + 2.43e4T^{2} \)
31 \( 1 - 146.T + 2.97e4T^{2} \)
37 \( 1 + 65.6T + 5.06e4T^{2} \)
41 \( 1 + 148.T + 6.89e4T^{2} \)
43 \( 1 + 453.T + 7.95e4T^{2} \)
47 \( 1 - 171.T + 1.03e5T^{2} \)
53 \( 1 - 440.T + 1.48e5T^{2} \)
59 \( 1 - 128.T + 2.05e5T^{2} \)
61 \( 1 - 395.T + 2.26e5T^{2} \)
67 \( 1 + 380.T + 3.00e5T^{2} \)
71 \( 1 + 490.T + 3.57e5T^{2} \)
73 \( 1 + 288.T + 3.89e5T^{2} \)
79 \( 1 + 395.T + 4.93e5T^{2} \)
83 \( 1 + 845.T + 5.71e5T^{2} \)
89 \( 1 - 743.T + 7.04e5T^{2} \)
97 \( 1 + 1.84e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.682647081309511959101621614569, −8.391060083245493301120027648766, −7.57814896900267243031974835516, −6.62420315222244241818644742127, −5.51633475074722403115979584822, −4.68350837537307571290715642326, −3.91745810339942319399504836320, −2.51157914312916136308767971296, −1.49158526900901127653196770842, 0, 1.49158526900901127653196770842, 2.51157914312916136308767971296, 3.91745810339942319399504836320, 4.68350837537307571290715642326, 5.51633475074722403115979584822, 6.62420315222244241818644742127, 7.57814896900267243031974835516, 8.391060083245493301120027648766, 8.682647081309511959101621614569

Graph of the $Z$-function along the critical line