Properties

Label 2-1080-1.1-c3-0-41
Degree $2$
Conductor $1080$
Sign $-1$
Analytic cond. $63.7220$
Root an. cond. $7.98261$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·5-s − 10.2·7-s + 5.26·11-s + 34.5·13-s − 74.8·17-s − 50.8·19-s + 81.4·23-s + 25·25-s − 152.·29-s + 93.9·31-s − 51.3·35-s − 167.·37-s − 18.6·41-s + 133.·43-s − 46.8·47-s − 237.·49-s + 105.·53-s + 26.3·55-s + 77.7·59-s − 48.6·61-s + 172.·65-s − 667.·67-s + 344.·71-s − 1.07e3·73-s − 54·77-s − 420.·79-s + 296.·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.554·7-s + 0.144·11-s + 0.737·13-s − 1.06·17-s − 0.614·19-s + 0.738·23-s + 0.200·25-s − 0.975·29-s + 0.544·31-s − 0.247·35-s − 0.743·37-s − 0.0709·41-s + 0.473·43-s − 0.145·47-s − 0.692·49-s + 0.272·53-s + 0.0645·55-s + 0.171·59-s − 0.102·61-s + 0.329·65-s − 1.21·67-s + 0.575·71-s − 1.72·73-s − 0.0799·77-s − 0.599·79-s + 0.392·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1080\)    =    \(2^{3} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(63.7220\)
Root analytic conductor: \(7.98261\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1080,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - 5T \)
good7 \( 1 + 10.2T + 343T^{2} \)
11 \( 1 - 5.26T + 1.33e3T^{2} \)
13 \( 1 - 34.5T + 2.19e3T^{2} \)
17 \( 1 + 74.8T + 4.91e3T^{2} \)
19 \( 1 + 50.8T + 6.85e3T^{2} \)
23 \( 1 - 81.4T + 1.21e4T^{2} \)
29 \( 1 + 152.T + 2.43e4T^{2} \)
31 \( 1 - 93.9T + 2.97e4T^{2} \)
37 \( 1 + 167.T + 5.06e4T^{2} \)
41 \( 1 + 18.6T + 6.89e4T^{2} \)
43 \( 1 - 133.T + 7.95e4T^{2} \)
47 \( 1 + 46.8T + 1.03e5T^{2} \)
53 \( 1 - 105.T + 1.48e5T^{2} \)
59 \( 1 - 77.7T + 2.05e5T^{2} \)
61 \( 1 + 48.6T + 2.26e5T^{2} \)
67 \( 1 + 667.T + 3.00e5T^{2} \)
71 \( 1 - 344.T + 3.57e5T^{2} \)
73 \( 1 + 1.07e3T + 3.89e5T^{2} \)
79 \( 1 + 420.T + 4.93e5T^{2} \)
83 \( 1 - 296.T + 5.71e5T^{2} \)
89 \( 1 + 950.T + 7.04e5T^{2} \)
97 \( 1 + 135.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.032199649222336861415918247741, −8.502953711254384300446765570932, −7.26364445451312869567025546360, −6.50202631623059677650968196447, −5.81659220612376088911722405013, −4.69958410563187524404989879724, −3.71000585339739398128885884258, −2.62849769895208670965553358323, −1.47042105000861003420020340199, 0, 1.47042105000861003420020340199, 2.62849769895208670965553358323, 3.71000585339739398128885884258, 4.69958410563187524404989879724, 5.81659220612376088911722405013, 6.50202631623059677650968196447, 7.26364445451312869567025546360, 8.502953711254384300446765570932, 9.032199649222336861415918247741

Graph of the $Z$-function along the critical line