Properties

Label 2-1080-1.1-c3-0-39
Degree $2$
Conductor $1080$
Sign $-1$
Analytic cond. $63.7220$
Root an. cond. $7.98261$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·5-s − 5.60·7-s − 53.5·11-s + 29.6·13-s + 109.·17-s − 67.6·19-s + 87.4·23-s + 25·25-s − 141.·29-s − 219.·31-s − 28.0·35-s + 436.·37-s − 68.7·41-s + 16.9·43-s − 566.·47-s − 311.·49-s − 95.0·53-s − 267.·55-s − 306.·59-s − 744.·61-s + 148.·65-s + 521.·67-s + 678.·71-s − 879.·73-s + 300.·77-s − 698.·79-s + 1.19e3·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.302·7-s − 1.46·11-s + 0.633·13-s + 1.55·17-s − 0.816·19-s + 0.792·23-s + 0.200·25-s − 0.909·29-s − 1.26·31-s − 0.135·35-s + 1.93·37-s − 0.261·41-s + 0.0600·43-s − 1.75·47-s − 0.908·49-s − 0.246·53-s − 0.656·55-s − 0.676·59-s − 1.56·61-s + 0.283·65-s + 0.950·67-s + 1.13·71-s − 1.41·73-s + 0.444·77-s − 0.994·79-s + 1.57·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1080\)    =    \(2^{3} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(63.7220\)
Root analytic conductor: \(7.98261\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1080,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - 5T \)
good7 \( 1 + 5.60T + 343T^{2} \)
11 \( 1 + 53.5T + 1.33e3T^{2} \)
13 \( 1 - 29.6T + 2.19e3T^{2} \)
17 \( 1 - 109.T + 4.91e3T^{2} \)
19 \( 1 + 67.6T + 6.85e3T^{2} \)
23 \( 1 - 87.4T + 1.21e4T^{2} \)
29 \( 1 + 141.T + 2.43e4T^{2} \)
31 \( 1 + 219.T + 2.97e4T^{2} \)
37 \( 1 - 436.T + 5.06e4T^{2} \)
41 \( 1 + 68.7T + 6.89e4T^{2} \)
43 \( 1 - 16.9T + 7.95e4T^{2} \)
47 \( 1 + 566.T + 1.03e5T^{2} \)
53 \( 1 + 95.0T + 1.48e5T^{2} \)
59 \( 1 + 306.T + 2.05e5T^{2} \)
61 \( 1 + 744.T + 2.26e5T^{2} \)
67 \( 1 - 521.T + 3.00e5T^{2} \)
71 \( 1 - 678.T + 3.57e5T^{2} \)
73 \( 1 + 879.T + 3.89e5T^{2} \)
79 \( 1 + 698.T + 4.93e5T^{2} \)
83 \( 1 - 1.19e3T + 5.71e5T^{2} \)
89 \( 1 - 840.T + 7.04e5T^{2} \)
97 \( 1 + 1.04e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.234498800039154969791761675908, −8.114452480360851587845004336251, −7.59938936184512779101892961852, −6.42431943506750949001302539055, −5.65293825069743491992370100570, −4.90863519105514332967960224071, −3.56627494681457311495608723035, −2.70257400147801841515595620050, −1.45161828626845281510298223159, 0, 1.45161828626845281510298223159, 2.70257400147801841515595620050, 3.56627494681457311495608723035, 4.90863519105514332967960224071, 5.65293825069743491992370100570, 6.42431943506750949001302539055, 7.59938936184512779101892961852, 8.114452480360851587845004336251, 9.234498800039154969791761675908

Graph of the $Z$-function along the critical line