Properties

Label 2-1080-1.1-c3-0-28
Degree $2$
Conductor $1080$
Sign $-1$
Analytic cond. $63.7220$
Root an. cond. $7.98261$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·5-s − 12.8·7-s − 18.2·11-s + 20.2·13-s − 6.65·17-s + 150.·19-s + 88.1·23-s + 25·25-s + 201.·29-s − 268.·31-s + 64.3·35-s − 123.·37-s − 275.·41-s + 488.·43-s − 436.·47-s − 177.·49-s − 340.·53-s + 91.2·55-s − 548.·59-s − 206.·61-s − 101.·65-s + 499.·67-s + 460.·71-s − 416.·73-s + 234.·77-s − 289.·79-s − 909.·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.694·7-s − 0.500·11-s + 0.432·13-s − 0.0949·17-s + 1.82·19-s + 0.798·23-s + 0.200·25-s + 1.29·29-s − 1.55·31-s + 0.310·35-s − 0.548·37-s − 1.04·41-s + 1.73·43-s − 1.35·47-s − 0.517·49-s − 0.882·53-s + 0.223·55-s − 1.21·59-s − 0.434·61-s − 0.193·65-s + 0.911·67-s + 0.770·71-s − 0.668·73-s + 0.347·77-s − 0.412·79-s − 1.20·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1080\)    =    \(2^{3} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(63.7220\)
Root analytic conductor: \(7.98261\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1080,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 5T \)
good7 \( 1 + 12.8T + 343T^{2} \)
11 \( 1 + 18.2T + 1.33e3T^{2} \)
13 \( 1 - 20.2T + 2.19e3T^{2} \)
17 \( 1 + 6.65T + 4.91e3T^{2} \)
19 \( 1 - 150.T + 6.85e3T^{2} \)
23 \( 1 - 88.1T + 1.21e4T^{2} \)
29 \( 1 - 201.T + 2.43e4T^{2} \)
31 \( 1 + 268.T + 2.97e4T^{2} \)
37 \( 1 + 123.T + 5.06e4T^{2} \)
41 \( 1 + 275.T + 6.89e4T^{2} \)
43 \( 1 - 488.T + 7.95e4T^{2} \)
47 \( 1 + 436.T + 1.03e5T^{2} \)
53 \( 1 + 340.T + 1.48e5T^{2} \)
59 \( 1 + 548.T + 2.05e5T^{2} \)
61 \( 1 + 206.T + 2.26e5T^{2} \)
67 \( 1 - 499.T + 3.00e5T^{2} \)
71 \( 1 - 460.T + 3.57e5T^{2} \)
73 \( 1 + 416.T + 3.89e5T^{2} \)
79 \( 1 + 289.T + 4.93e5T^{2} \)
83 \( 1 + 909.T + 5.71e5T^{2} \)
89 \( 1 + 186.T + 7.04e5T^{2} \)
97 \( 1 - 648.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.172249481895020743335809589555, −8.224105947794659174390729348985, −7.39708394952974130625071613689, −6.66697153965319629591050197700, −5.60712167993410584464833593888, −4.78737943043371031191158694242, −3.51959144883890842562687995851, −2.91353802485379134713463961787, −1.29590027269441164641487579845, 0, 1.29590027269441164641487579845, 2.91353802485379134713463961787, 3.51959144883890842562687995851, 4.78737943043371031191158694242, 5.60712167993410584464833593888, 6.66697153965319629591050197700, 7.39708394952974130625071613689, 8.224105947794659174390729348985, 9.172249481895020743335809589555

Graph of the $Z$-function along the critical line