L(s) = 1 | − 5·5-s − 3.85·7-s + 42.2·11-s + 4.96·13-s − 25.8·17-s + 28.9·19-s − 191.·23-s + 25·25-s + 287.·29-s + 52.6·31-s + 19.2·35-s − 225.·37-s + 73.9·41-s − 275.·43-s − 192.·47-s − 328.·49-s + 275.·53-s − 211.·55-s + 497.·59-s + 44.0·61-s − 24.8·65-s + 761.·67-s + 264.·71-s + 728.·73-s − 163.·77-s + 664.·79-s + 1.49e3·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.208·7-s + 1.15·11-s + 0.105·13-s − 0.369·17-s + 0.350·19-s − 1.73·23-s + 0.200·25-s + 1.84·29-s + 0.305·31-s + 0.0931·35-s − 1.00·37-s + 0.281·41-s − 0.976·43-s − 0.596·47-s − 0.956·49-s + 0.713·53-s − 0.518·55-s + 1.09·59-s + 0.0924·61-s − 0.0473·65-s + 1.38·67-s + 0.441·71-s + 1.16·73-s − 0.241·77-s + 0.946·79-s + 1.97·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.814937102\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.814937102\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + 5T \) |
good | 7 | \( 1 + 3.85T + 343T^{2} \) |
| 11 | \( 1 - 42.2T + 1.33e3T^{2} \) |
| 13 | \( 1 - 4.96T + 2.19e3T^{2} \) |
| 17 | \( 1 + 25.8T + 4.91e3T^{2} \) |
| 19 | \( 1 - 28.9T + 6.85e3T^{2} \) |
| 23 | \( 1 + 191.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 287.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 52.6T + 2.97e4T^{2} \) |
| 37 | \( 1 + 225.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 73.9T + 6.89e4T^{2} \) |
| 43 | \( 1 + 275.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 192.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 275.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 497.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 44.0T + 2.26e5T^{2} \) |
| 67 | \( 1 - 761.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 264.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 728.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 664.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.49e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 106.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 924.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.568827125993691358247551415875, −8.554788506479603047017022812725, −8.016135375957208348443834637786, −6.77869701818573832443564971794, −6.37605361929033029909593553927, −5.11395257140662274878112368258, −4.12463576321131943517577708272, −3.36987185654270255202751829043, −2.01104205526282171519443229088, −0.71073809864372135639065978957,
0.71073809864372135639065978957, 2.01104205526282171519443229088, 3.36987185654270255202751829043, 4.12463576321131943517577708272, 5.11395257140662274878112368258, 6.37605361929033029909593553927, 6.77869701818573832443564971794, 8.016135375957208348443834637786, 8.554788506479603047017022812725, 9.568827125993691358247551415875