L(s) = 1 | + (−2.44 + 4.24i)5-s + (5.32 + 9.22i)7-s + (17.7 + 30.7i)11-s + (−36.3 + 62.9i)13-s + 127.·17-s − 46.3·19-s + (−65.5 + 113. i)23-s + (50.5 + 87.4i)25-s + (−68.7 − 119. i)29-s + (53.0 − 91.9i)31-s − 52.1·35-s + 137.·37-s + (−35.8 + 62.1i)41-s + (−188. − 326. i)43-s + (−306. − 531. i)47-s + ⋯ |
L(s) = 1 | + (−0.219 + 0.379i)5-s + (0.287 + 0.498i)7-s + (0.485 + 0.841i)11-s + (−0.775 + 1.34i)13-s + 1.81·17-s − 0.560·19-s + (−0.594 + 1.02i)23-s + (0.404 + 0.699i)25-s + (−0.440 − 0.762i)29-s + (0.307 − 0.532i)31-s − 0.252·35-s + 0.610·37-s + (−0.136 + 0.236i)41-s + (−0.668 − 1.15i)43-s + (−0.952 − 1.64i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.241 - 0.970i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.241 - 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.12518 + 0.879927i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.12518 + 0.879927i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (2.44 - 4.24i)T + (-62.5 - 108. i)T^{2} \) |
| 7 | \( 1 + (-5.32 - 9.22i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (-17.7 - 30.7i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (36.3 - 62.9i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 - 127.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 46.3T + 6.85e3T^{2} \) |
| 23 | \( 1 + (65.5 - 113. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (68.7 + 119. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-53.0 + 91.9i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 - 137.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (35.8 - 62.1i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (188. + 326. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (306. + 531. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 - 431.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (142. - 247. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-21.9 - 38.0i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-22.6 + 39.1i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 357.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 530.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-97.5 - 168. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-380. - 658. i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 1.21e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-552. - 956. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.51964286725274008310458595711, −12.00218071368992990265877012755, −11.74386124722269177645984727946, −10.11298442875650763935324691896, −9.285469010819274202718184661817, −7.83042344170278209602709142547, −6.82786670829519917594680307417, −5.33381873979545944384191600159, −3.86032498225292129408747640846, −1.98419366211113976054550999618,
0.838075709161267440041902480326, 3.19849824177341612019070204320, 4.75352069789129608425317439024, 6.07135521324305211373277146049, 7.66364455059587464179483954627, 8.442024772881548228542011118635, 9.933622607779295860126863290506, 10.80206304797634604973418199055, 12.12785534951389065258410022600, 12.82502953211679163752117895769