Properties

Label 2-108-108.95-c1-0-4
Degree $2$
Conductor $108$
Sign $0.536 - 0.843i$
Analytic cond. $0.862384$
Root an. cond. $0.928646$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.39 + 0.201i)2-s + (−1.02 + 1.39i)3-s + (1.91 + 0.562i)4-s + (−2.12 + 2.53i)5-s + (−1.72 + 1.74i)6-s + (1.10 − 3.02i)7-s + (2.57 + 1.17i)8-s + (−0.879 − 2.86i)9-s + (−3.48 + 3.11i)10-s + (2.39 − 2.01i)11-s + (−2.75 + 2.09i)12-s + (0.431 − 2.44i)13-s + (2.15 − 4.01i)14-s + (−1.33 − 5.56i)15-s + (3.36 + 2.16i)16-s + (1.16 + 0.672i)17-s + ⋯
L(s)  = 1  + (0.989 + 0.142i)2-s + (−0.594 + 0.804i)3-s + (0.959 + 0.281i)4-s + (−0.950 + 1.13i)5-s + (−0.702 + 0.711i)6-s + (0.416 − 1.14i)7-s + (0.909 + 0.414i)8-s + (−0.293 − 0.956i)9-s + (−1.10 + 0.986i)10-s + (0.723 − 0.606i)11-s + (−0.796 + 0.604i)12-s + (0.119 − 0.678i)13-s + (0.575 − 1.07i)14-s + (−0.345 − 1.43i)15-s + (0.841 + 0.540i)16-s + (0.282 + 0.163i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.536 - 0.843i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.536 - 0.843i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108\)    =    \(2^{2} \cdot 3^{3}\)
Sign: $0.536 - 0.843i$
Analytic conductor: \(0.862384\)
Root analytic conductor: \(0.928646\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{108} (95, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 108,\ (\ :1/2),\ 0.536 - 0.843i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.22420 + 0.672455i\)
\(L(\frac12)\) \(\approx\) \(1.22420 + 0.672455i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.39 - 0.201i)T \)
3 \( 1 + (1.02 - 1.39i)T \)
good5 \( 1 + (2.12 - 2.53i)T + (-0.868 - 4.92i)T^{2} \)
7 \( 1 + (-1.10 + 3.02i)T + (-5.36 - 4.49i)T^{2} \)
11 \( 1 + (-2.39 + 2.01i)T + (1.91 - 10.8i)T^{2} \)
13 \( 1 + (-0.431 + 2.44i)T + (-12.2 - 4.44i)T^{2} \)
17 \( 1 + (-1.16 - 0.672i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (5.00 - 2.88i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (2.02 - 0.736i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (7.98 - 1.40i)T + (27.2 - 9.91i)T^{2} \)
31 \( 1 + (1.43 + 3.93i)T + (-23.7 + 19.9i)T^{2} \)
37 \( 1 + (-0.857 + 1.48i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-0.757 - 0.133i)T + (38.5 + 14.0i)T^{2} \)
43 \( 1 + (-0.738 - 0.880i)T + (-7.46 + 42.3i)T^{2} \)
47 \( 1 + (2.75 + 1.00i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 + 2.35iT - 53T^{2} \)
59 \( 1 + (3.53 + 2.96i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (-1.07 - 0.390i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (-14.0 - 2.47i)T + (62.9 + 22.9i)T^{2} \)
71 \( 1 + (4.55 - 7.88i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-6.23 - 10.8i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (9.28 - 1.63i)T + (74.2 - 27.0i)T^{2} \)
83 \( 1 + (0.863 + 4.89i)T + (-77.9 + 28.3i)T^{2} \)
89 \( 1 + (-5.96 + 3.44i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (5.19 - 4.35i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.30810647482368222087119220475, −12.80392955425448672077994295077, −11.46302008308099624577300354603, −11.05796198495284197743168012402, −10.23185478817461298555891720289, −8.032233463954405018933666422513, −6.94557274143657066159947662555, −5.82557671615039765136073301674, −4.09741006066496806786801901273, −3.57619581354226467873524282517, 1.89197246400016204712587603627, 4.30899839212207387437290006222, 5.29100512029357918300437920508, 6.56424525942106810551231647891, 7.83893252337647154685290743322, 9.029822537743841228512778894350, 11.09181201828188605908197519803, 11.91840735657662130753380577495, 12.32323128250191575731362546367, 13.17338920949291791754895103245

Graph of the $Z$-function along the critical line