Properties

Label 2-108-108.95-c1-0-3
Degree $2$
Conductor $108$
Sign $-0.435 - 0.900i$
Analytic cond. $0.862384$
Root an. cond. $0.928646$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.684 + 1.23i)2-s + (1.44 + 0.948i)3-s + (−1.06 − 1.69i)4-s + (−2.41 + 2.87i)5-s + (−2.16 + 1.14i)6-s + (0.0801 − 0.220i)7-s + (2.82 − 0.153i)8-s + (1.20 + 2.74i)9-s + (−1.90 − 4.95i)10-s + (2.36 − 1.98i)11-s + (0.0674 − 3.46i)12-s + (−0.155 + 0.880i)13-s + (0.217 + 0.250i)14-s + (−6.21 + 1.87i)15-s + (−1.74 + 3.60i)16-s + (−2.18 − 1.26i)17-s + ⋯
L(s)  = 1  + (−0.484 + 0.874i)2-s + (0.836 + 0.547i)3-s + (−0.531 − 0.847i)4-s + (−1.07 + 1.28i)5-s + (−0.884 + 0.467i)6-s + (0.0303 − 0.0832i)7-s + (0.998 − 0.0544i)8-s + (0.400 + 0.916i)9-s + (−0.602 − 1.56i)10-s + (0.712 − 0.597i)11-s + (0.0194 − 0.999i)12-s + (−0.0430 + 0.244i)13-s + (0.0581 + 0.0668i)14-s + (−1.60 + 0.484i)15-s + (−0.435 + 0.900i)16-s + (−0.530 − 0.306i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.435 - 0.900i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.435 - 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108\)    =    \(2^{2} \cdot 3^{3}\)
Sign: $-0.435 - 0.900i$
Analytic conductor: \(0.862384\)
Root analytic conductor: \(0.928646\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{108} (95, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 108,\ (\ :1/2),\ -0.435 - 0.900i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.472533 + 0.753699i\)
\(L(\frac12)\) \(\approx\) \(0.472533 + 0.753699i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.684 - 1.23i)T \)
3 \( 1 + (-1.44 - 0.948i)T \)
good5 \( 1 + (2.41 - 2.87i)T + (-0.868 - 4.92i)T^{2} \)
7 \( 1 + (-0.0801 + 0.220i)T + (-5.36 - 4.49i)T^{2} \)
11 \( 1 + (-2.36 + 1.98i)T + (1.91 - 10.8i)T^{2} \)
13 \( 1 + (0.155 - 0.880i)T + (-12.2 - 4.44i)T^{2} \)
17 \( 1 + (2.18 + 1.26i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-5.71 + 3.30i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.764 + 0.278i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (-8.40 + 1.48i)T + (27.2 - 9.91i)T^{2} \)
31 \( 1 + (0.710 + 1.95i)T + (-23.7 + 19.9i)T^{2} \)
37 \( 1 + (0.697 - 1.20i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (8.54 + 1.50i)T + (38.5 + 14.0i)T^{2} \)
43 \( 1 + (-2.07 - 2.47i)T + (-7.46 + 42.3i)T^{2} \)
47 \( 1 + (10.1 + 3.69i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 - 4.76iT - 53T^{2} \)
59 \( 1 + (7.52 + 6.31i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (5.15 + 1.87i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (1.13 + 0.200i)T + (62.9 + 22.9i)T^{2} \)
71 \( 1 + (-4.28 + 7.42i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (1.27 + 2.21i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (8.54 - 1.50i)T + (74.2 - 27.0i)T^{2} \)
83 \( 1 + (-0.675 - 3.83i)T + (-77.9 + 28.3i)T^{2} \)
89 \( 1 + (0.286 - 0.165i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (10.1 - 8.52i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.19474052303657881734649973769, −13.75484490241675565346458321462, −11.58116394022725809368726737695, −10.70310169467002818500583691553, −9.578007301534968190170489211829, −8.493805353611764407183383847956, −7.48904566283470879952686965421, −6.61246647881494741278960431942, −4.59687213645666407739942099320, −3.21704464367050128272269778652, 1.34884159747390622706450761636, 3.44504036713054363022676650627, 4.62716700224192873427071052279, 7.22704171604021889618871511371, 8.248978180773246420501775958661, 8.880858593591877289921323225525, 9.942988814696728204773355367859, 11.72690031572372002922453470441, 12.22175084410167264457715268330, 13.01474866376191266758435645971

Graph of the $Z$-function along the critical line