Properties

Label 2-108-108.95-c1-0-2
Degree $2$
Conductor $108$
Sign $-0.787 - 0.615i$
Analytic cond. $0.862384$
Root an. cond. $0.928646$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.470 + 1.33i)2-s + (−1.72 + 0.0988i)3-s + (−1.55 + 1.25i)4-s + (−0.580 + 0.691i)5-s + (−0.944 − 2.25i)6-s + (−1.54 + 4.24i)7-s + (−2.40 − 1.48i)8-s + (2.98 − 0.341i)9-s + (−1.19 − 0.448i)10-s + (3.82 − 3.20i)11-s + (2.57 − 2.32i)12-s + (−0.531 + 3.01i)13-s + (−6.38 − 0.0650i)14-s + (0.935 − 1.25i)15-s + (0.854 − 3.90i)16-s + (1.45 + 0.841i)17-s + ⋯
L(s)  = 1  + (0.332 + 0.943i)2-s + (−0.998 + 0.0570i)3-s + (−0.778 + 0.627i)4-s + (−0.259 + 0.309i)5-s + (−0.385 − 0.922i)6-s + (−0.583 + 1.60i)7-s + (−0.850 − 0.526i)8-s + (0.993 − 0.113i)9-s + (−0.377 − 0.141i)10-s + (1.15 − 0.967i)11-s + (0.741 − 0.670i)12-s + (−0.147 + 0.836i)13-s + (−1.70 − 0.0173i)14-s + (0.241 − 0.323i)15-s + (0.213 − 0.976i)16-s + (0.353 + 0.204i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.787 - 0.615i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.787 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108\)    =    \(2^{2} \cdot 3^{3}\)
Sign: $-0.787 - 0.615i$
Analytic conductor: \(0.862384\)
Root analytic conductor: \(0.928646\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{108} (95, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 108,\ (\ :1/2),\ -0.787 - 0.615i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.245741 + 0.713260i\)
\(L(\frac12)\) \(\approx\) \(0.245741 + 0.713260i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.470 - 1.33i)T \)
3 \( 1 + (1.72 - 0.0988i)T \)
good5 \( 1 + (0.580 - 0.691i)T + (-0.868 - 4.92i)T^{2} \)
7 \( 1 + (1.54 - 4.24i)T + (-5.36 - 4.49i)T^{2} \)
11 \( 1 + (-3.82 + 3.20i)T + (1.91 - 10.8i)T^{2} \)
13 \( 1 + (0.531 - 3.01i)T + (-12.2 - 4.44i)T^{2} \)
17 \( 1 + (-1.45 - 0.841i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-2.58 + 1.49i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.595 + 0.216i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (3.15 - 0.556i)T + (27.2 - 9.91i)T^{2} \)
31 \( 1 + (-1.74 - 4.79i)T + (-23.7 + 19.9i)T^{2} \)
37 \( 1 + (-3.12 + 5.40i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (0.604 + 0.106i)T + (38.5 + 14.0i)T^{2} \)
43 \( 1 + (2.73 + 3.26i)T + (-7.46 + 42.3i)T^{2} \)
47 \( 1 + (-0.594 - 0.216i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 + 9.93iT - 53T^{2} \)
59 \( 1 + (-5.76 - 4.83i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (2.30 + 0.838i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (-6.52 - 1.15i)T + (62.9 + 22.9i)T^{2} \)
71 \( 1 + (0.592 - 1.02i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-2.03 - 3.51i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (0.274 - 0.0484i)T + (74.2 - 27.0i)T^{2} \)
83 \( 1 + (0.794 + 4.50i)T + (-77.9 + 28.3i)T^{2} \)
89 \( 1 + (-11.5 + 6.69i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (4.79 - 4.02i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.34414589172469093453011365382, −13.01161816053426170716107499550, −12.01305217081586241979468832571, −11.43627903589622382976053956580, −9.533880850908765175188056772794, −8.762292405914824296108941623666, −7.02998795456120088715080300704, −6.16430201991341459445022246566, −5.27742698717771073839387358122, −3.58104319371805037533816351560, 0.966111655821775479981238858745, 3.80195799245331752630549602571, 4.74012130226940257346005783323, 6.32386568597768957470100055511, 7.59036733257041617908964163415, 9.685372849983069230950473864818, 10.17957984208578901320871708993, 11.31741207465285009591578868788, 12.23549299378266338328220988756, 12.99307038875407690378918223136

Graph of the $Z$-function along the critical line