Properties

Label 2-108-1.1-c3-0-2
Degree $2$
Conductor $108$
Sign $-1$
Analytic cond. $6.37220$
Root an. cond. $2.52432$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·5-s − 7-s − 63·11-s − 28·13-s − 72·17-s + 98·19-s − 126·23-s − 44·25-s + 126·29-s − 259·31-s + 9·35-s + 386·37-s + 450·41-s − 34·43-s + 54·47-s − 342·49-s + 693·53-s + 567·55-s − 180·59-s − 280·61-s + 252·65-s − 586·67-s − 504·71-s + 161·73-s + 63·77-s + 440·79-s − 999·83-s + ⋯
L(s)  = 1  − 0.804·5-s − 0.0539·7-s − 1.72·11-s − 0.597·13-s − 1.02·17-s + 1.18·19-s − 1.14·23-s − 0.351·25-s + 0.806·29-s − 1.50·31-s + 0.0434·35-s + 1.71·37-s + 1.71·41-s − 0.120·43-s + 0.167·47-s − 0.997·49-s + 1.79·53-s + 1.39·55-s − 0.397·59-s − 0.587·61-s + 0.480·65-s − 1.06·67-s − 0.842·71-s + 0.258·73-s + 0.0932·77-s + 0.626·79-s − 1.32·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108\)    =    \(2^{2} \cdot 3^{3}\)
Sign: $-1$
Analytic conductor: \(6.37220\)
Root analytic conductor: \(2.52432\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 108,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 9 T + p^{3} T^{2} \)
7 \( 1 + T + p^{3} T^{2} \)
11 \( 1 + 63 T + p^{3} T^{2} \)
13 \( 1 + 28 T + p^{3} T^{2} \)
17 \( 1 + 72 T + p^{3} T^{2} \)
19 \( 1 - 98 T + p^{3} T^{2} \)
23 \( 1 + 126 T + p^{3} T^{2} \)
29 \( 1 - 126 T + p^{3} T^{2} \)
31 \( 1 + 259 T + p^{3} T^{2} \)
37 \( 1 - 386 T + p^{3} T^{2} \)
41 \( 1 - 450 T + p^{3} T^{2} \)
43 \( 1 + 34 T + p^{3} T^{2} \)
47 \( 1 - 54 T + p^{3} T^{2} \)
53 \( 1 - 693 T + p^{3} T^{2} \)
59 \( 1 + 180 T + p^{3} T^{2} \)
61 \( 1 + 280 T + p^{3} T^{2} \)
67 \( 1 + 586 T + p^{3} T^{2} \)
71 \( 1 + 504 T + p^{3} T^{2} \)
73 \( 1 - 161 T + p^{3} T^{2} \)
79 \( 1 - 440 T + p^{3} T^{2} \)
83 \( 1 + 999 T + p^{3} T^{2} \)
89 \( 1 + 882 T + p^{3} T^{2} \)
97 \( 1 + 721 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.69852293054928171776385933261, −11.64623547976634463665146418366, −10.66260715386423092924323794803, −9.520679422406036484536688279493, −8.047642729618155402896996081227, −7.38048454173714354773578158485, −5.65278678665416088916980207287, −4.32183988531793745304061991296, −2.64589824016396713951461199238, 0, 2.64589824016396713951461199238, 4.32183988531793745304061991296, 5.65278678665416088916980207287, 7.38048454173714354773578158485, 8.047642729618155402896996081227, 9.520679422406036484536688279493, 10.66260715386423092924323794803, 11.64623547976634463665146418366, 12.69852293054928171776385933261

Graph of the $Z$-function along the critical line