L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.662 − 0.382i)3-s + (0.499 + 0.866i)4-s + (−1.77 − 1.02i)5-s − 0.765·6-s − 0.999i·8-s + (−1.20 + 2.09i)9-s + (1.02 + 1.77i)10-s + (0.649 − 3.25i)11-s + (0.662 + 0.382i)12-s + 6.59·13-s − 1.57·15-s + (−0.5 + 0.866i)16-s + (1.80 + 3.12i)17-s + (2.09 − 1.20i)18-s + (0.439 − 0.760i)19-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.382 − 0.220i)3-s + (0.249 + 0.433i)4-s + (−0.794 − 0.458i)5-s − 0.312·6-s − 0.353i·8-s + (−0.402 + 0.696i)9-s + (0.324 + 0.561i)10-s + (0.195 − 0.980i)11-s + (0.191 + 0.110i)12-s + 1.82·13-s − 0.405·15-s + (−0.125 + 0.216i)16-s + (0.437 + 0.758i)17-s + (0.492 − 0.284i)18-s + (0.100 − 0.174i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1078 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.228 + 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1078 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.228 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.163187295\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.163187295\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (-0.649 + 3.25i)T \) |
good | 3 | \( 1 + (-0.662 + 0.382i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.77 + 1.02i)T + (2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 - 6.59T + 13T^{2} \) |
| 17 | \( 1 + (-1.80 - 3.12i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.439 + 0.760i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.30 - 5.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 6.18iT - 29T^{2} \) |
| 31 | \( 1 + (-5.61 + 3.24i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.52 + 9.56i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 2.36T + 41T^{2} \) |
| 43 | \( 1 + 7.81iT - 43T^{2} \) |
| 47 | \( 1 + (4.97 + 2.87i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.214 + 0.372i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.78 + 1.60i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.66 + 9.81i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.48 + 2.56i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2.13T + 71T^{2} \) |
| 73 | \( 1 + (-5.41 - 9.37i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.34 - 4.24i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 12.3T + 83T^{2} \) |
| 89 | \( 1 + (-5.82 - 3.36i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 9.23iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.579458689646975288511959631488, −8.607730201579285728353355170491, −8.187894965547120982919153892766, −7.74493557378877536869785474142, −6.33233275161491531977065902017, −5.57201127610251757775173290617, −3.98069406149053669931689430092, −3.48542748128455362048683828607, −2.05652394654472832075623041072, −0.74299048224009907660657037755,
1.16744746796294225126946326649, 2.88588414331074555981203451571, 3.73308098784022180152216576184, 4.78549082010528559750110913782, 6.22992868983794642803970035804, 6.67217558902041504468802898724, 7.77950261181211744665208457016, 8.374444725167270694225486702532, 9.121522784441999075194258794800, 9.948935123518394732904992047728