Properties

Label 2-1078-7.2-c1-0-24
Degree $2$
Conductor $1078$
Sign $0.947 + 0.318i$
Analytic cond. $8.60787$
Root an. cond. $2.93391$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (0.707 + 1.22i)3-s + (−0.499 − 0.866i)4-s + (2.12 − 3.67i)5-s − 1.41·6-s + 0.999·8-s + (0.500 − 0.866i)9-s + (2.12 + 3.67i)10-s + (0.5 + 0.866i)11-s + (0.707 − 1.22i)12-s + 6·15-s + (−0.5 + 0.866i)16-s + (−2.82 − 4.89i)17-s + (0.499 + 0.866i)18-s − 4.24·20-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (0.408 + 0.707i)3-s + (−0.249 − 0.433i)4-s + (0.948 − 1.64i)5-s − 0.577·6-s + 0.353·8-s + (0.166 − 0.288i)9-s + (0.670 + 1.16i)10-s + (0.150 + 0.261i)11-s + (0.204 − 0.353i)12-s + 1.54·15-s + (−0.125 + 0.216i)16-s + (−0.685 − 1.18i)17-s + (0.117 + 0.204i)18-s − 0.948·20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1078 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 + 0.318i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1078 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.947 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1078\)    =    \(2 \cdot 7^{2} \cdot 11\)
Sign: $0.947 + 0.318i$
Analytic conductor: \(8.60787\)
Root analytic conductor: \(2.93391\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1078} (177, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1078,\ (\ :1/2),\ 0.947 + 0.318i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.733347359\)
\(L(\frac12)\) \(\approx\) \(1.733347359\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
7 \( 1 \)
11 \( 1 + (-0.5 - 0.866i)T \)
good3 \( 1 + (-0.707 - 1.22i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + (-2.12 + 3.67i)T + (-2.5 - 4.33i)T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + (2.82 + 4.89i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (3 - 5.19i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 + (0.707 + 1.22i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-5 + 8.66i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 - 11.3T + 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 + (-2.12 + 3.67i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (4 + 6.92i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-0.707 - 1.22i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (1.41 - 2.44i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (1 + 1.73i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 2T + 71T^{2} \)
73 \( 1 + (-4.24 - 7.34i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (8 - 13.8i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 16.9T + 83T^{2} \)
89 \( 1 + (3.53 - 6.12i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 - 9.89T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.514289404603703577775870179117, −9.189411241816531751841551166480, −8.475520609925464626455094685063, −7.48684758473498329486200643415, −6.35847628994209351256829494358, −5.46319089850240842925834156012, −4.74174954866515649927987989756, −3.96766298188808790951595826413, −2.20744775122042189013747546161, −0.863390962916596040672524380146, 1.63731177589728058753183449524, 2.41866996381734089683057062447, 3.17280420684963810221051575129, 4.47590798445976548610636401238, 6.13149707476088979412324054824, 6.51913572396882816143215733480, 7.51291375672964869510772347803, 8.230225051663784141190443047227, 9.199738636852081754999587505386, 10.18627553900618061274281436577

Graph of the $Z$-function along the critical line