Properties

Label 2-1075-1.1-c5-0-125
Degree $2$
Conductor $1075$
Sign $1$
Analytic cond. $172.412$
Root an. cond. $13.1305$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.25·2-s − 22.3·3-s − 13.9·4-s − 94.8·6-s + 47.8·7-s − 195.·8-s + 254.·9-s + 701.·11-s + 310.·12-s + 193.·13-s + 203.·14-s − 384.·16-s + 2.30e3·17-s + 1.08e3·18-s + 2.64e3·19-s − 1.06e3·21-s + 2.98e3·22-s − 285.·23-s + 4.35e3·24-s + 824.·26-s − 253.·27-s − 666.·28-s − 5.88e3·29-s − 2.95e3·31-s + 4.61e3·32-s − 1.56e4·33-s + 9.79e3·34-s + ⋯
L(s)  = 1  + 0.751·2-s − 1.43·3-s − 0.435·4-s − 1.07·6-s + 0.369·7-s − 1.07·8-s + 1.04·9-s + 1.74·11-s + 0.622·12-s + 0.318·13-s + 0.277·14-s − 0.375·16-s + 1.93·17-s + 0.786·18-s + 1.67·19-s − 0.527·21-s + 1.31·22-s − 0.112·23-s + 1.54·24-s + 0.239·26-s − 0.0670·27-s − 0.160·28-s − 1.29·29-s − 0.552·31-s + 0.796·32-s − 2.49·33-s + 1.45·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1075 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1075 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1075\)    =    \(5^{2} \cdot 43\)
Sign: $1$
Analytic conductor: \(172.412\)
Root analytic conductor: \(13.1305\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1075,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.165019724\)
\(L(\frac12)\) \(\approx\) \(2.165019724\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
43 \( 1 + 1.84e3T \)
good2 \( 1 - 4.25T + 32T^{2} \)
3 \( 1 + 22.3T + 243T^{2} \)
7 \( 1 - 47.8T + 1.68e4T^{2} \)
11 \( 1 - 701.T + 1.61e5T^{2} \)
13 \( 1 - 193.T + 3.71e5T^{2} \)
17 \( 1 - 2.30e3T + 1.41e6T^{2} \)
19 \( 1 - 2.64e3T + 2.47e6T^{2} \)
23 \( 1 + 285.T + 6.43e6T^{2} \)
29 \( 1 + 5.88e3T + 2.05e7T^{2} \)
31 \( 1 + 2.95e3T + 2.86e7T^{2} \)
37 \( 1 - 4.08e3T + 6.93e7T^{2} \)
41 \( 1 + 1.25e4T + 1.15e8T^{2} \)
47 \( 1 + 2.58e3T + 2.29e8T^{2} \)
53 \( 1 - 1.80e4T + 4.18e8T^{2} \)
59 \( 1 - 2.97e4T + 7.14e8T^{2} \)
61 \( 1 - 2.91e4T + 8.44e8T^{2} \)
67 \( 1 - 1.94e4T + 1.35e9T^{2} \)
71 \( 1 - 5.05e4T + 1.80e9T^{2} \)
73 \( 1 + 1.80e4T + 2.07e9T^{2} \)
79 \( 1 - 5.95e4T + 3.07e9T^{2} \)
83 \( 1 - 1.09e4T + 3.93e9T^{2} \)
89 \( 1 + 1.27e4T + 5.58e9T^{2} \)
97 \( 1 + 7.32e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.452900341167293160888619412015, −8.301202273758764807544461712024, −7.18092971757353424875218813843, −6.31158155962827522697607539797, −5.44365403203359077885691291379, −5.21999531643201433053419635008, −3.94925313120547162170799328604, −3.41089940419702697471530222844, −1.38151378696327976652980334948, −0.70428867126473387351463981481, 0.70428867126473387351463981481, 1.38151378696327976652980334948, 3.41089940419702697471530222844, 3.94925313120547162170799328604, 5.21999531643201433053419635008, 5.44365403203359077885691291379, 6.31158155962827522697607539797, 7.18092971757353424875218813843, 8.301202273758764807544461712024, 9.452900341167293160888619412015

Graph of the $Z$-function along the critical line