Properties

Label 2-1075-1.1-c5-0-122
Degree $2$
Conductor $1075$
Sign $1$
Analytic cond. $172.412$
Root an. cond. $13.1305$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.5·2-s − 10.8·3-s + 78.5·4-s − 114.·6-s − 153.·7-s + 489.·8-s − 125.·9-s + 87.2·11-s − 853.·12-s − 901.·13-s − 1.61e3·14-s + 2.63e3·16-s + 193.·17-s − 1.31e3·18-s + 2.51e3·19-s + 1.66e3·21-s + 917.·22-s − 741.·23-s − 5.31e3·24-s − 9.48e3·26-s + 3.99e3·27-s − 1.20e4·28-s + 1.39e3·29-s + 1.39e3·31-s + 1.20e4·32-s − 947.·33-s + 2.03e3·34-s + ⋯
L(s)  = 1  + 1.85·2-s − 0.696·3-s + 2.45·4-s − 1.29·6-s − 1.18·7-s + 2.70·8-s − 0.514·9-s + 0.217·11-s − 1.71·12-s − 1.47·13-s − 2.19·14-s + 2.57·16-s + 0.162·17-s − 0.956·18-s + 1.59·19-s + 0.824·21-s + 0.403·22-s − 0.292·23-s − 1.88·24-s − 2.75·26-s + 1.05·27-s − 2.90·28-s + 0.308·29-s + 0.260·31-s + 2.07·32-s − 0.151·33-s + 0.302·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1075 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1075 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1075\)    =    \(5^{2} \cdot 43\)
Sign: $1$
Analytic conductor: \(172.412\)
Root analytic conductor: \(13.1305\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1075,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.686801300\)
\(L(\frac12)\) \(\approx\) \(4.686801300\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
43 \( 1 - 1.84e3T \)
good2 \( 1 - 10.5T + 32T^{2} \)
3 \( 1 + 10.8T + 243T^{2} \)
7 \( 1 + 153.T + 1.68e4T^{2} \)
11 \( 1 - 87.2T + 1.61e5T^{2} \)
13 \( 1 + 901.T + 3.71e5T^{2} \)
17 \( 1 - 193.T + 1.41e6T^{2} \)
19 \( 1 - 2.51e3T + 2.47e6T^{2} \)
23 \( 1 + 741.T + 6.43e6T^{2} \)
29 \( 1 - 1.39e3T + 2.05e7T^{2} \)
31 \( 1 - 1.39e3T + 2.86e7T^{2} \)
37 \( 1 - 7.56e3T + 6.93e7T^{2} \)
41 \( 1 + 1.03e4T + 1.15e8T^{2} \)
47 \( 1 - 2.03e3T + 2.29e8T^{2} \)
53 \( 1 - 5.14e3T + 4.18e8T^{2} \)
59 \( 1 - 4.56e4T + 7.14e8T^{2} \)
61 \( 1 - 3.45e4T + 8.44e8T^{2} \)
67 \( 1 - 5.81e4T + 1.35e9T^{2} \)
71 \( 1 - 2.78e4T + 1.80e9T^{2} \)
73 \( 1 + 1.29e4T + 2.07e9T^{2} \)
79 \( 1 - 9.48e4T + 3.07e9T^{2} \)
83 \( 1 - 8.96e4T + 3.93e9T^{2} \)
89 \( 1 + 2.86e4T + 5.58e9T^{2} \)
97 \( 1 + 4.11e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.512964518533994975671237850057, −7.905700076854556325545059685399, −6.88669239995996808283544640813, −6.48230156384248850588161478850, −5.41468145561405914228404063247, −5.15277266481209525851129680425, −3.93552919555868722773715113754, −3.07488696590271914877024333893, −2.38330339227751347181705268471, −0.69336562585408233613511636235, 0.69336562585408233613511636235, 2.38330339227751347181705268471, 3.07488696590271914877024333893, 3.93552919555868722773715113754, 5.15277266481209525851129680425, 5.41468145561405914228404063247, 6.48230156384248850588161478850, 6.88669239995996808283544640813, 7.905700076854556325545059685399, 9.512964518533994975671237850057

Graph of the $Z$-function along the critical line