Properties

Label 2-1075-1.1-c5-0-110
Degree $2$
Conductor $1075$
Sign $1$
Analytic cond. $172.412$
Root an. cond. $13.1305$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.20·2-s − 17.5·3-s − 14.3·4-s + 73.9·6-s + 253.·7-s + 194.·8-s + 65.7·9-s − 360.·11-s + 251.·12-s + 40.7·13-s − 1.06e3·14-s − 361.·16-s − 218.·17-s − 276.·18-s − 807.·19-s − 4.45e3·21-s + 1.51e3·22-s + 4.17e3·23-s − 3.42e3·24-s − 171.·26-s + 3.11e3·27-s − 3.63e3·28-s + 8.77e3·29-s + 2.57e3·31-s − 4.71e3·32-s + 6.34e3·33-s + 920.·34-s + ⋯
L(s)  = 1  − 0.743·2-s − 1.12·3-s − 0.447·4-s + 0.838·6-s + 1.95·7-s + 1.07·8-s + 0.270·9-s − 0.899·11-s + 0.504·12-s + 0.0668·13-s − 1.45·14-s − 0.352·16-s − 0.183·17-s − 0.201·18-s − 0.513·19-s − 2.20·21-s + 0.668·22-s + 1.64·23-s − 1.21·24-s − 0.0496·26-s + 0.822·27-s − 0.875·28-s + 1.93·29-s + 0.481·31-s − 0.813·32-s + 1.01·33-s + 0.136·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1075 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1075 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1075\)    =    \(5^{2} \cdot 43\)
Sign: $1$
Analytic conductor: \(172.412\)
Root analytic conductor: \(13.1305\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1075,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.083429487\)
\(L(\frac12)\) \(\approx\) \(1.083429487\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
43 \( 1 - 1.84e3T \)
good2 \( 1 + 4.20T + 32T^{2} \)
3 \( 1 + 17.5T + 243T^{2} \)
7 \( 1 - 253.T + 1.68e4T^{2} \)
11 \( 1 + 360.T + 1.61e5T^{2} \)
13 \( 1 - 40.7T + 3.71e5T^{2} \)
17 \( 1 + 218.T + 1.41e6T^{2} \)
19 \( 1 + 807.T + 2.47e6T^{2} \)
23 \( 1 - 4.17e3T + 6.43e6T^{2} \)
29 \( 1 - 8.77e3T + 2.05e7T^{2} \)
31 \( 1 - 2.57e3T + 2.86e7T^{2} \)
37 \( 1 - 6.23e3T + 6.93e7T^{2} \)
41 \( 1 - 5.49e3T + 1.15e8T^{2} \)
47 \( 1 + 1.30e4T + 2.29e8T^{2} \)
53 \( 1 - 2.36e4T + 4.18e8T^{2} \)
59 \( 1 - 8.13e3T + 7.14e8T^{2} \)
61 \( 1 + 1.80e4T + 8.44e8T^{2} \)
67 \( 1 - 3.31e4T + 1.35e9T^{2} \)
71 \( 1 + 6.61e4T + 1.80e9T^{2} \)
73 \( 1 + 2.49e3T + 2.07e9T^{2} \)
79 \( 1 - 8.85e4T + 3.07e9T^{2} \)
83 \( 1 - 1.59e4T + 3.93e9T^{2} \)
89 \( 1 + 2.88e4T + 5.58e9T^{2} \)
97 \( 1 + 1.43e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.957989258524677641298182873966, −8.337330466975555083220435602020, −7.75651835478058608430087335504, −6.74585151665260659379579388512, −5.51173149831647486199288487879, −4.86416326938495493962987786255, −4.45547727839357815214758867159, −2.54855262657065910026268152641, −1.24850639398037044778601132906, −0.63881965402925697489927065579, 0.63881965402925697489927065579, 1.24850639398037044778601132906, 2.54855262657065910026268152641, 4.45547727839357815214758867159, 4.86416326938495493962987786255, 5.51173149831647486199288487879, 6.74585151665260659379579388512, 7.75651835478058608430087335504, 8.337330466975555083220435602020, 8.957989258524677641298182873966

Graph of the $Z$-function along the critical line