Properties

Label 2-1071-1.1-c1-0-31
Degree $2$
Conductor $1071$
Sign $1$
Analytic cond. $8.55197$
Root an. cond. $2.92437$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.32·2-s + 3.42·4-s + 3.16·5-s − 7-s + 3.32·8-s + 7.38·10-s − 0.406·11-s + 3.07·13-s − 2.32·14-s + 0.886·16-s − 17-s − 1.57·19-s + 10.8·20-s − 0.946·22-s − 0.852·23-s + 5.04·25-s + 7.17·26-s − 3.42·28-s + 1.49·29-s − 0.316·31-s − 4.57·32-s − 2.32·34-s − 3.16·35-s + 10.6·37-s − 3.67·38-s + 10.5·40-s − 11.8·41-s + ⋯
L(s)  = 1  + 1.64·2-s + 1.71·4-s + 1.41·5-s − 0.377·7-s + 1.17·8-s + 2.33·10-s − 0.122·11-s + 0.854·13-s − 0.622·14-s + 0.221·16-s − 0.242·17-s − 0.362·19-s + 2.42·20-s − 0.201·22-s − 0.177·23-s + 1.00·25-s + 1.40·26-s − 0.647·28-s + 0.278·29-s − 0.0568·31-s − 0.809·32-s − 0.399·34-s − 0.535·35-s + 1.74·37-s − 0.596·38-s + 1.66·40-s − 1.85·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1071\)    =    \(3^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(8.55197\)
Root analytic conductor: \(2.92437\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1071,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.868695574\)
\(L(\frac12)\) \(\approx\) \(4.868695574\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good2 \( 1 - 2.32T + 2T^{2} \)
5 \( 1 - 3.16T + 5T^{2} \)
11 \( 1 + 0.406T + 11T^{2} \)
13 \( 1 - 3.07T + 13T^{2} \)
19 \( 1 + 1.57T + 19T^{2} \)
23 \( 1 + 0.852T + 23T^{2} \)
29 \( 1 - 1.49T + 29T^{2} \)
31 \( 1 + 0.316T + 31T^{2} \)
37 \( 1 - 10.6T + 37T^{2} \)
41 \( 1 + 11.8T + 41T^{2} \)
43 \( 1 + 4.70T + 43T^{2} \)
47 \( 1 + 9.09T + 47T^{2} \)
53 \( 1 - 4.34T + 53T^{2} \)
59 \( 1 + 7.15T + 59T^{2} \)
61 \( 1 + 3.87T + 61T^{2} \)
67 \( 1 - 5.48T + 67T^{2} \)
71 \( 1 - 8.73T + 71T^{2} \)
73 \( 1 - 6.25T + 73T^{2} \)
79 \( 1 - 3.77T + 79T^{2} \)
83 \( 1 - 5.35T + 83T^{2} \)
89 \( 1 + 14.1T + 89T^{2} \)
97 \( 1 + 0.623T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01617372088883412442866584375, −9.232780643362219863575807214366, −8.166561169304786587105265140756, −6.69042861127185264420172008974, −6.34236019401565509210068832056, −5.56445135232467930104627945510, −4.79019524407272346299057270507, −3.70338840549253129316472031337, −2.73885673412750403632093243225, −1.75105383020301437125779422172, 1.75105383020301437125779422172, 2.73885673412750403632093243225, 3.70338840549253129316472031337, 4.79019524407272346299057270507, 5.56445135232467930104627945510, 6.34236019401565509210068832056, 6.69042861127185264420172008974, 8.166561169304786587105265140756, 9.232780643362219863575807214366, 10.01617372088883412442866584375

Graph of the $Z$-function along the critical line