Properties

Label 2-1058-1.1-c3-0-61
Degree $2$
Conductor $1058$
Sign $1$
Analytic cond. $62.4240$
Root an. cond. $7.90088$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 7·3-s + 4·4-s − 18·5-s + 14·6-s + 30·7-s + 8·8-s + 22·9-s − 36·10-s + 6·11-s + 28·12-s + 79·13-s + 60·14-s − 126·15-s + 16·16-s − 102·17-s + 44·18-s + 36·19-s − 72·20-s + 210·21-s + 12·22-s + 56·24-s + 199·25-s + 158·26-s − 35·27-s + 120·28-s + 33·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.34·3-s + 1/2·4-s − 1.60·5-s + 0.952·6-s + 1.61·7-s + 0.353·8-s + 0.814·9-s − 1.13·10-s + 0.164·11-s + 0.673·12-s + 1.68·13-s + 1.14·14-s − 2.16·15-s + 1/4·16-s − 1.45·17-s + 0.576·18-s + 0.434·19-s − 0.804·20-s + 2.18·21-s + 0.116·22-s + 0.476·24-s + 1.59·25-s + 1.19·26-s − 0.249·27-s + 0.809·28-s + 0.211·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1058 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1058 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1058\)    =    \(2 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(62.4240\)
Root analytic conductor: \(7.90088\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1058,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.399947165\)
\(L(\frac12)\) \(\approx\) \(5.399947165\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
23 \( 1 \)
good3 \( 1 - 7 T + p^{3} T^{2} \)
5 \( 1 + 18 T + p^{3} T^{2} \)
7 \( 1 - 30 T + p^{3} T^{2} \)
11 \( 1 - 6 T + p^{3} T^{2} \)
13 \( 1 - 79 T + p^{3} T^{2} \)
17 \( 1 + 6 p T + p^{3} T^{2} \)
19 \( 1 - 36 T + p^{3} T^{2} \)
29 \( 1 - 33 T + p^{3} T^{2} \)
31 \( 1 - 43 T + p^{3} T^{2} \)
37 \( 1 - 354 T + p^{3} T^{2} \)
41 \( 1 - 375 T + p^{3} T^{2} \)
43 \( 1 + 96 T + p^{3} T^{2} \)
47 \( 1 + 129 T + p^{3} T^{2} \)
53 \( 1 - 300 T + p^{3} T^{2} \)
59 \( 1 + 324 T + p^{3} T^{2} \)
61 \( 1 + 120 T + p^{3} T^{2} \)
67 \( 1 + 582 T + p^{3} T^{2} \)
71 \( 1 - 147 T + p^{3} T^{2} \)
73 \( 1 - 637 T + p^{3} T^{2} \)
79 \( 1 - 468 T + p^{3} T^{2} \)
83 \( 1 + 978 T + p^{3} T^{2} \)
89 \( 1 - 252 T + p^{3} T^{2} \)
97 \( 1 - 1170 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.065422902787766191681517987224, −8.484576168536895042274991860778, −7.931888574464164324866156852100, −7.37377843724436038077355207378, −6.15061688081245703993648519691, −4.68050247083329749665490942877, −4.16166956141698986518921446802, −3.44127254271915338509174205935, −2.33513053317751965166494014675, −1.12818538864848404845691384922, 1.12818538864848404845691384922, 2.33513053317751965166494014675, 3.44127254271915338509174205935, 4.16166956141698986518921446802, 4.68050247083329749665490942877, 6.15061688081245703993648519691, 7.37377843724436038077355207378, 7.931888574464164324866156852100, 8.484576168536895042274991860778, 9.065422902787766191681517987224

Graph of the $Z$-function along the critical line