Properties

Label 2-1058-1.1-c3-0-57
Degree $2$
Conductor $1058$
Sign $1$
Analytic cond. $62.4240$
Root an. cond. $7.90088$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 9·3-s + 4·4-s + 20·5-s − 18·6-s − 2·7-s + 8·8-s + 54·9-s + 40·10-s + 52·11-s − 36·12-s + 43·13-s − 4·14-s − 180·15-s + 16·16-s + 50·17-s + 108·18-s + 74·19-s + 80·20-s + 18·21-s + 104·22-s − 72·24-s + 275·25-s + 86·26-s − 243·27-s − 8·28-s − 7·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s + 1/2·4-s + 1.78·5-s − 1.22·6-s − 0.107·7-s + 0.353·8-s + 2·9-s + 1.26·10-s + 1.42·11-s − 0.866·12-s + 0.917·13-s − 0.0763·14-s − 3.09·15-s + 1/4·16-s + 0.713·17-s + 1.41·18-s + 0.893·19-s + 0.894·20-s + 0.187·21-s + 1.00·22-s − 0.612·24-s + 11/5·25-s + 0.648·26-s − 1.73·27-s − 0.0539·28-s − 0.0448·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1058 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1058 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1058\)    =    \(2 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(62.4240\)
Root analytic conductor: \(7.90088\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1058,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.368637408\)
\(L(\frac12)\) \(\approx\) \(3.368637408\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
23 \( 1 \)
good3 \( 1 + p^{2} T + p^{3} T^{2} \)
5 \( 1 - 4 p T + p^{3} T^{2} \)
7 \( 1 + 2 T + p^{3} T^{2} \)
11 \( 1 - 52 T + p^{3} T^{2} \)
13 \( 1 - 43 T + p^{3} T^{2} \)
17 \( 1 - 50 T + p^{3} T^{2} \)
19 \( 1 - 74 T + p^{3} T^{2} \)
29 \( 1 + 7 T + p^{3} T^{2} \)
31 \( 1 + 273 T + p^{3} T^{2} \)
37 \( 1 - 4 T + p^{3} T^{2} \)
41 \( 1 - 3 p T + p^{3} T^{2} \)
43 \( 1 - 152 T + p^{3} T^{2} \)
47 \( 1 - 75 T + p^{3} T^{2} \)
53 \( 1 + 86 T + p^{3} T^{2} \)
59 \( 1 + 444 T + p^{3} T^{2} \)
61 \( 1 + 262 T + p^{3} T^{2} \)
67 \( 1 + 764 T + p^{3} T^{2} \)
71 \( 1 + 21 T + p^{3} T^{2} \)
73 \( 1 - 681 T + p^{3} T^{2} \)
79 \( 1 + 426 T + p^{3} T^{2} \)
83 \( 1 + 902 T + p^{3} T^{2} \)
89 \( 1 - 1272 T + p^{3} T^{2} \)
97 \( 1 - 342 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.690391745609265231296084089470, −9.107673982060656499193684015517, −7.32023413802923643502471607137, −6.47790012349066323044157039967, −5.94940490753389475679828375647, −5.54237146862631509075664156284, −4.60017578403263171197325565748, −3.41082280492892568525898940268, −1.69543567478314322126139462052, −1.08828736899378739737913408212, 1.08828736899378739737913408212, 1.69543567478314322126139462052, 3.41082280492892568525898940268, 4.60017578403263171197325565748, 5.54237146862631509075664156284, 5.94940490753389475679828375647, 6.47790012349066323044157039967, 7.32023413802923643502471607137, 9.107673982060656499193684015517, 9.690391745609265231296084089470

Graph of the $Z$-function along the critical line