Properties

Label 2-1058-1.1-c3-0-54
Degree $2$
Conductor $1058$
Sign $1$
Analytic cond. $62.4240$
Root an. cond. $7.90088$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4·3-s + 4·4-s + 10.1·5-s − 8·6-s + 20.3·7-s + 8·8-s − 11·9-s + 20.3·10-s + 71.3·11-s − 16·12-s − 42·13-s + 40.7·14-s − 40.7·15-s + 16·16-s + 20.3·17-s − 22·18-s + 91.7·19-s + 40.7·20-s − 81.5·21-s + 142.·22-s − 32·24-s − 21.0·25-s − 84·26-s + 152·27-s + 81.5·28-s − 22·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.769·3-s + 0.5·4-s + 0.912·5-s − 0.544·6-s + 1.10·7-s + 0.353·8-s − 0.407·9-s + 0.644·10-s + 1.95·11-s − 0.384·12-s − 0.896·13-s + 0.778·14-s − 0.702·15-s + 0.250·16-s + 0.290·17-s − 0.288·18-s + 1.10·19-s + 0.456·20-s − 0.847·21-s + 1.38·22-s − 0.272·24-s − 0.168·25-s − 0.633·26-s + 1.08·27-s + 0.550·28-s − 0.140·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1058 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1058 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1058\)    =    \(2 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(62.4240\)
Root analytic conductor: \(7.90088\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1058,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.901715306\)
\(L(\frac12)\) \(\approx\) \(3.901715306\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
23 \( 1 \)
good3 \( 1 + 4T + 27T^{2} \)
5 \( 1 - 10.1T + 125T^{2} \)
7 \( 1 - 20.3T + 343T^{2} \)
11 \( 1 - 71.3T + 1.33e3T^{2} \)
13 \( 1 + 42T + 2.19e3T^{2} \)
17 \( 1 - 20.3T + 4.91e3T^{2} \)
19 \( 1 - 91.7T + 6.85e3T^{2} \)
29 \( 1 + 22T + 2.43e4T^{2} \)
31 \( 1 - 296T + 2.97e4T^{2} \)
37 \( 1 + 275.T + 5.06e4T^{2} \)
41 \( 1 + 318T + 6.89e4T^{2} \)
43 \( 1 - 316.T + 7.95e4T^{2} \)
47 \( 1 + 184T + 1.03e5T^{2} \)
53 \( 1 - 91.7T + 1.48e5T^{2} \)
59 \( 1 + 500T + 2.05e5T^{2} \)
61 \( 1 - 30.5T + 2.26e5T^{2} \)
67 \( 1 + 642.T + 3.00e5T^{2} \)
71 \( 1 - 224T + 3.57e5T^{2} \)
73 \( 1 + 210T + 3.89e5T^{2} \)
79 \( 1 - 1.08e3T + 4.93e5T^{2} \)
83 \( 1 - 1.15e3T + 5.71e5T^{2} \)
89 \( 1 + 815.T + 7.04e5T^{2} \)
97 \( 1 - 1.24e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.645582813740595956351871985673, −8.785618222073313657485952162395, −7.66289569197074928551556513183, −6.65337618441228491502437275743, −6.02990543612263850384814116027, −5.17927784856347654626433937946, −4.59432108303203310397189840610, −3.30210050984986435809655227221, −1.96198321738219333673548290917, −1.06248712243162700266691420609, 1.06248712243162700266691420609, 1.96198321738219333673548290917, 3.30210050984986435809655227221, 4.59432108303203310397189840610, 5.17927784856347654626433937946, 6.02990543612263850384814116027, 6.65337618441228491502437275743, 7.66289569197074928551556513183, 8.785618222073313657485952162395, 9.645582813740595956351871985673

Graph of the $Z$-function along the critical line