Properties

Label 2-105222-1.1-c1-0-7
Degree $2$
Conductor $105222$
Sign $-1$
Analytic cond. $840.201$
Root an. cond. $28.9862$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 7-s + 8-s + 9-s − 10-s − 2·11-s + 12-s − 13-s + 14-s − 15-s + 16-s − 3·17-s + 18-s + 19-s − 20-s + 21-s − 2·22-s + 3·23-s + 24-s − 4·25-s − 26-s + 27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.603·11-s + 0.288·12-s − 0.277·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.727·17-s + 0.235·18-s + 0.229·19-s − 0.223·20-s + 0.218·21-s − 0.426·22-s + 0.625·23-s + 0.204·24-s − 4/5·25-s − 0.196·26-s + 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105222 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105222 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(105222\)    =    \(2 \cdot 3 \cdot 13 \cdot 19 \cdot 71\)
Sign: $-1$
Analytic conductor: \(840.201\)
Root analytic conductor: \(28.9862\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 105222,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
13 \( 1 + T \)
19 \( 1 - T \)
71 \( 1 - T \)
good5 \( 1 + T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 + 7 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 7 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.71034678576662, −13.40635621963649, −13.29386305528672, −12.52529915601419, −11.95771513671291, −11.65925054731728, −11.09891596289275, −10.62460330490657, −10.01858471638706, −9.600141481391545, −8.894189554307769, −8.371107776913056, −7.938185101368107, −7.484441169896120, −6.877649138964665, −6.513911083394112, −5.660010854307939, −5.140030586477808, −4.754108849714491, −4.052752523070108, −3.612394713840516, −3.021641111784277, −2.298807738005042, −1.939760706450153, −0.9896489000599301, 0, 0.9896489000599301, 1.939760706450153, 2.298807738005042, 3.021641111784277, 3.612394713840516, 4.052752523070108, 4.754108849714491, 5.140030586477808, 5.660010854307939, 6.513911083394112, 6.877649138964665, 7.484441169896120, 7.938185101368107, 8.371107776913056, 8.894189554307769, 9.600141481391545, 10.01858471638706, 10.62460330490657, 11.09891596289275, 11.65925054731728, 11.95771513671291, 12.52529915601419, 13.29386305528672, 13.40635621963649, 13.71034678576662

Graph of the $Z$-function along the critical line