L(s) = 1 | + 2-s + 3-s + 4-s − 5-s + 6-s + 7-s + 8-s + 9-s − 10-s − 2·11-s + 12-s − 13-s + 14-s − 15-s + 16-s − 3·17-s + 18-s + 19-s − 20-s + 21-s − 2·22-s + 3·23-s + 24-s − 4·25-s − 26-s + 27-s + 28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.603·11-s + 0.288·12-s − 0.277·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.727·17-s + 0.235·18-s + 0.229·19-s − 0.223·20-s + 0.218·21-s − 0.426·22-s + 0.625·23-s + 0.204·24-s − 4/5·25-s − 0.196·26-s + 0.192·27-s + 0.188·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 105222 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105222 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 13 | \( 1 + T \) |
| 19 | \( 1 - T \) |
| 71 | \( 1 - T \) |
good | 5 | \( 1 + T + p T^{2} \) |
| 7 | \( 1 - T + p T^{2} \) |
| 11 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 3 T + p T^{2} \) |
| 23 | \( 1 - 3 T + p T^{2} \) |
| 29 | \( 1 + 5 T + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 - 3 T + p T^{2} \) |
| 41 | \( 1 + 7 T + p T^{2} \) |
| 43 | \( 1 + 12 T + p T^{2} \) |
| 47 | \( 1 - 6 T + p T^{2} \) |
| 53 | \( 1 - 12 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 - 6 T + p T^{2} \) |
| 67 | \( 1 + 2 T + p T^{2} \) |
| 73 | \( 1 - 4 T + p T^{2} \) |
| 79 | \( 1 - 10 T + p T^{2} \) |
| 83 | \( 1 - 7 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 - 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.71034678576662, −13.40635621963649, −13.29386305528672, −12.52529915601419, −11.95771513671291, −11.65925054731728, −11.09891596289275, −10.62460330490657, −10.01858471638706, −9.600141481391545, −8.894189554307769, −8.371107776913056, −7.938185101368107, −7.484441169896120, −6.877649138964665, −6.513911083394112, −5.660010854307939, −5.140030586477808, −4.754108849714491, −4.052752523070108, −3.612394713840516, −3.021641111784277, −2.298807738005042, −1.939760706450153, −0.9896489000599301, 0,
0.9896489000599301, 1.939760706450153, 2.298807738005042, 3.021641111784277, 3.612394713840516, 4.052752523070108, 4.754108849714491, 5.140030586477808, 5.660010854307939, 6.513911083394112, 6.877649138964665, 7.484441169896120, 7.938185101368107, 8.371107776913056, 8.894189554307769, 9.600141481391545, 10.01858471638706, 10.62460330490657, 11.09891596289275, 11.65925054731728, 11.95771513671291, 12.52529915601419, 13.29386305528672, 13.40635621963649, 13.71034678576662