Properties

Label 2-105222-1.1-c1-0-4
Degree $2$
Conductor $105222$
Sign $1$
Analytic cond. $840.201$
Root an. cond. $28.9862$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 2·5-s − 6-s + 4·7-s + 8-s + 9-s + 2·10-s + 4·11-s − 12-s + 13-s + 4·14-s − 2·15-s + 16-s + 4·17-s + 18-s − 19-s + 2·20-s − 4·21-s + 4·22-s − 24-s − 25-s + 26-s − 27-s + 4·28-s + 4·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s + 1.51·7-s + 0.353·8-s + 1/3·9-s + 0.632·10-s + 1.20·11-s − 0.288·12-s + 0.277·13-s + 1.06·14-s − 0.516·15-s + 1/4·16-s + 0.970·17-s + 0.235·18-s − 0.229·19-s + 0.447·20-s − 0.872·21-s + 0.852·22-s − 0.204·24-s − 1/5·25-s + 0.196·26-s − 0.192·27-s + 0.755·28-s + 0.742·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105222 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105222 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(105222\)    =    \(2 \cdot 3 \cdot 13 \cdot 19 \cdot 71\)
Sign: $1$
Analytic conductor: \(840.201\)
Root analytic conductor: \(28.9862\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 105222,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.523010958\)
\(L(\frac12)\) \(\approx\) \(7.523010958\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
13 \( 1 - T \)
19 \( 1 + T \)
71 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.83132629114529, −13.30481759745172, −12.64142899137428, −12.22305708882749, −11.70372361376645, −11.45872562562168, −10.80538699938785, −10.48541528769051, −9.871147877212258, −9.270905303181111, −8.819469297583238, −8.132212035483231, −7.546216515698813, −7.198092381548327, −6.297057138786337, −6.059391049533104, −5.612648469463566, −4.993898333572448, −4.511563592598228, −4.047210245439276, −3.375831369471049, −2.506687963776939, −1.857213517276522, −1.374775404062519, −0.8505049648336486, 0.8505049648336486, 1.374775404062519, 1.857213517276522, 2.506687963776939, 3.375831369471049, 4.047210245439276, 4.511563592598228, 4.993898333572448, 5.612648469463566, 6.059391049533104, 6.297057138786337, 7.198092381548327, 7.546216515698813, 8.132212035483231, 8.819469297583238, 9.270905303181111, 9.871147877212258, 10.48541528769051, 10.80538699938785, 11.45872562562168, 11.70372361376645, 12.22305708882749, 12.64142899137428, 13.30481759745172, 13.83132629114529

Graph of the $Z$-function along the critical line