Properties

Label 2-105222-1.1-c1-0-11
Degree $2$
Conductor $105222$
Sign $1$
Analytic cond. $840.201$
Root an. cond. $28.9862$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 2·5-s − 6-s − 7-s + 8-s + 9-s − 2·10-s − 12-s − 13-s − 14-s + 2·15-s + 16-s − 2·17-s + 18-s + 19-s − 2·20-s + 21-s + 23-s − 24-s − 25-s − 26-s − 27-s − 28-s + 5·29-s + 2·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.632·10-s − 0.288·12-s − 0.277·13-s − 0.267·14-s + 0.516·15-s + 1/4·16-s − 0.485·17-s + 0.235·18-s + 0.229·19-s − 0.447·20-s + 0.218·21-s + 0.208·23-s − 0.204·24-s − 1/5·25-s − 0.196·26-s − 0.192·27-s − 0.188·28-s + 0.928·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105222 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105222 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(105222\)    =    \(2 \cdot 3 \cdot 13 \cdot 19 \cdot 71\)
Sign: $1$
Analytic conductor: \(840.201\)
Root analytic conductor: \(28.9862\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 105222,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
13 \( 1 + T \)
19 \( 1 - T \)
71 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 - 5 T + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
37 \( 1 + 11 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 9 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 14 T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
73 \( 1 + T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 + 11 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.20393244486493, −13.67720581758750, −13.01445555587525, −12.78958725291671, −12.21729173291828, −11.72459419494125, −11.46724446058876, −10.96337491877742, −10.29992065667076, −10.00941299317437, −9.291914362279314, −8.675417938536272, −8.103094709756330, −7.622273809947180, −6.967408958846992, −6.662255807396467, −6.173068836893351, −5.401028722033458, −4.913428781013119, −4.602273845463789, −3.774239353955267, −3.395325739797546, −2.891089353821754, −1.866677600541949, −1.404394547703166, 0, 0, 1.404394547703166, 1.866677600541949, 2.891089353821754, 3.395325739797546, 3.774239353955267, 4.602273845463789, 4.913428781013119, 5.401028722033458, 6.173068836893351, 6.662255807396467, 6.967408958846992, 7.622273809947180, 8.103094709756330, 8.675417938536272, 9.291914362279314, 10.00941299317437, 10.29992065667076, 10.96337491877742, 11.46724446058876, 11.72459419494125, 12.21729173291828, 12.78958725291671, 13.01445555587525, 13.67720581758750, 14.20393244486493

Graph of the $Z$-function along the critical line