Properties

Label 2-105222-1.1-c1-0-0
Degree $2$
Conductor $105222$
Sign $1$
Analytic cond. $840.201$
Root an. cond. $28.9862$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 7-s − 8-s + 9-s − 10-s − 12-s − 13-s + 14-s − 15-s + 16-s + 3·17-s − 18-s − 19-s + 20-s + 21-s + 9·23-s + 24-s − 4·25-s + 26-s − 27-s − 28-s − 5·29-s + 30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s − 0.277·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.727·17-s − 0.235·18-s − 0.229·19-s + 0.223·20-s + 0.218·21-s + 1.87·23-s + 0.204·24-s − 4/5·25-s + 0.196·26-s − 0.192·27-s − 0.188·28-s − 0.928·29-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105222 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105222 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(105222\)    =    \(2 \cdot 3 \cdot 13 \cdot 19 \cdot 71\)
Sign: $1$
Analytic conductor: \(840.201\)
Root analytic conductor: \(28.9862\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 105222,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4770513180\)
\(L(\frac12)\) \(\approx\) \(0.4770513180\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
13 \( 1 + T \)
19 \( 1 + T \)
71 \( 1 - T \)
good5 \( 1 - T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
23 \( 1 - 9 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 - T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 8 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 14 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 11 T + p T^{2} \)
89 \( 1 + 16 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.62873886856478, −12.98323184217916, −12.72200413058540, −12.33725408971372, −11.42094079275946, −11.31928103655923, −10.79453903702386, −10.13813358631138, −9.821182136820387, −9.253030192308041, −9.010345999135095, −8.160035339590763, −7.736458923031591, −7.078320067831699, −6.775857568377524, −6.188043092540628, −5.495840097366359, −5.275339426815301, −4.566332916446138, −3.620970866175280, −3.284720616435133, −2.487982589773222, −1.692974339733917, −1.311918949922947, −0.2532779115687856, 0.2532779115687856, 1.311918949922947, 1.692974339733917, 2.487982589773222, 3.284720616435133, 3.620970866175280, 4.566332916446138, 5.275339426815301, 5.495840097366359, 6.188043092540628, 6.775857568377524, 7.078320067831699, 7.736458923031591, 8.160035339590763, 9.010345999135095, 9.253030192308041, 9.821182136820387, 10.13813358631138, 10.79453903702386, 11.31928103655923, 11.42094079275946, 12.33725408971372, 12.72200413058540, 12.98323184217916, 13.62873886856478

Graph of the $Z$-function along the critical line