| L(s) = 1 | − 4i·2-s + 9i·3-s − 16·4-s + 36·6-s + 49i·7-s + 64i·8-s − 81·9-s + 216·11-s − 144i·12-s − 998i·13-s + 196·14-s + 256·16-s + 1.30e3i·17-s + 324i·18-s − 884·19-s + ⋯ |
| L(s) = 1 | − 0.707i·2-s + 0.577i·3-s − 0.5·4-s + 0.408·6-s + 0.377i·7-s + 0.353i·8-s − 0.333·9-s + 0.538·11-s − 0.288i·12-s − 1.63i·13-s + 0.267·14-s + 0.250·16-s + 1.09i·17-s + 0.235i·18-s − 0.561·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(3)\) |
\(\approx\) |
\(1.877771993\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.877771993\) |
| \(L(\frac{7}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + 4iT \) |
| 3 | \( 1 - 9iT \) |
| 5 | \( 1 \) |
| 7 | \( 1 - 49iT \) |
| good | 11 | \( 1 - 216T + 1.61e5T^{2} \) |
| 13 | \( 1 + 998iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 1.30e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 884T + 2.47e6T^{2} \) |
| 23 | \( 1 - 2.26e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 1.48e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 8.36e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 4.71e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 + 9.78e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.94e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 2.22e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 2.67e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 2.80e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 3.88e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 2.39e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 2.06e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 290iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 9.95e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 1.93e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 + 3.63e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 7.90e4iT - 8.58e9T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.211433126041990958408015172270, −8.468916438998643056892091228891, −7.78536465460013522213364755446, −6.33368499683026729038060166761, −5.58248338769560090595730521320, −4.65644010017826025905763986868, −3.66516338241220223454728099492, −2.94747374557849682972651990727, −1.76938231399989872068125491488, −0.57386559701590160890638792612,
0.62661402488640268972036140659, 1.69944604946496315646301623660, 2.94751200962044276835549287307, 4.30734053220898864157231200143, 4.82667214081940254692594484588, 6.37777010966495410606434202864, 6.54812730040931987597674076735, 7.43964068391740601324538375369, 8.346897353237490953036070411316, 9.075656973880108183425007232434