Properties

Label 2-1050-35.4-c1-0-1
Degree $2$
Conductor $1050$
Sign $-0.951 - 0.308i$
Analytic cond. $8.38429$
Root an. cond. $2.89556$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 − 0.866i)4-s − 0.999·6-s + (−2.59 − 0.5i)7-s + 0.999i·8-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)12-s + 4i·13-s + (2.5 − 0.866i)14-s + (−0.5 − 0.866i)16-s + (−2.59 − 1.5i)17-s + (−0.866 − 0.499i)18-s + (1 + 1.73i)19-s + (−2 − 1.73i)21-s + ⋯
L(s)  = 1  + (−0.612 + 0.353i)2-s + (0.499 + 0.288i)3-s + (0.249 − 0.433i)4-s − 0.408·6-s + (−0.981 − 0.188i)7-s + 0.353i·8-s + (0.166 + 0.288i)9-s + (0.249 − 0.144i)12-s + 1.10i·13-s + (0.668 − 0.231i)14-s + (−0.125 − 0.216i)16-s + (−0.630 − 0.363i)17-s + (−0.204 − 0.117i)18-s + (0.229 + 0.397i)19-s + (−0.436 − 0.377i)21-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.951 - 0.308i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.951 - 0.308i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1050\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-0.951 - 0.308i$
Analytic conductor: \(8.38429\)
Root analytic conductor: \(2.89556\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1050} (949, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1050,\ (\ :1/2),\ -0.951 - 0.308i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5879050933\)
\(L(\frac12)\) \(\approx\) \(0.5879050933\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.866 - 0.5i)T \)
3 \( 1 + (-0.866 - 0.5i)T \)
5 \( 1 \)
7 \( 1 + (2.59 + 0.5i)T \)
good11 \( 1 + (-5.5 - 9.52i)T^{2} \)
13 \( 1 - 4iT - 13T^{2} \)
17 \( 1 + (2.59 + 1.5i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-1 - 1.73i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (2.59 - 1.5i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 + (-0.5 + 0.866i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (8.66 - 5i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + 9T + 41T^{2} \)
43 \( 1 - 10iT - 43T^{2} \)
47 \( 1 + (2.59 - 1.5i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (5.19 + 3i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (3 - 5.19i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-3.46 - 2i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 - 3T + 71T^{2} \)
73 \( 1 + (-12.1 - 7i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (-5.5 - 9.52i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 + (7.5 + 12.9i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + 7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.850641645621949532927361332205, −9.576562400019898579924586708903, −8.706380611458428497797070437264, −7.921449704699860112755946379729, −6.86379708904958193680851990568, −6.42685922226398800158548323598, −5.14540267101443590581945578673, −4.05117917690613556700332084726, −3.01595787007257189767430984190, −1.71906922528736840031405767898, 0.28679888545285685383411831134, 1.97421038950503791588238376305, 3.02852656325557699168525087812, 3.78545961133479854033229205882, 5.29216167819234952519569431919, 6.41638841684716686796228736187, 7.10565078724765226656042585540, 8.086673875837685337370876350792, 8.756083121221293187052725976441, 9.489865480471183374772913249392

Graph of the $Z$-function along the critical line