Properties

Label 2-105-21.5-c3-0-23
Degree $2$
Conductor $105$
Sign $0.764 - 0.644i$
Analytic cond. $6.19520$
Root an. cond. $2.48901$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (3.64 + 2.10i)2-s + (4.80 − 1.98i)3-s + (4.87 + 8.44i)4-s + (−2.5 + 4.33i)5-s + (21.7 + 2.86i)6-s + (16.7 − 7.79i)7-s + 7.40i·8-s + (19.1 − 19.0i)9-s + (−18.2 + 10.5i)10-s + (−50.2 + 28.9i)11-s + (40.2 + 30.8i)12-s + 47.9i·13-s + (77.7 + 6.94i)14-s + (−3.39 + 25.7i)15-s + (23.4 − 40.5i)16-s + (−11.9 − 20.6i)17-s + ⋯
L(s)  = 1  + (1.29 + 0.744i)2-s + (0.924 − 0.382i)3-s + (0.609 + 1.05i)4-s + (−0.223 + 0.387i)5-s + (1.47 + 0.194i)6-s + (0.907 − 0.420i)7-s + 0.327i·8-s + (0.707 − 0.706i)9-s + (−0.577 + 0.333i)10-s + (−1.37 + 0.794i)11-s + (0.967 + 0.742i)12-s + 1.02i·13-s + (1.48 + 0.132i)14-s + (−0.0585 + 0.443i)15-s + (0.366 − 0.634i)16-s + (−0.169 − 0.294i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.764 - 0.644i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.764 - 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(105\)    =    \(3 \cdot 5 \cdot 7\)
Sign: $0.764 - 0.644i$
Analytic conductor: \(6.19520\)
Root analytic conductor: \(2.48901\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{105} (26, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 105,\ (\ :3/2),\ 0.764 - 0.644i)\)

Particular Values

\(L(2)\) \(\approx\) \(3.59893 + 1.31378i\)
\(L(\frac12)\) \(\approx\) \(3.59893 + 1.31378i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-4.80 + 1.98i)T \)
5 \( 1 + (2.5 - 4.33i)T \)
7 \( 1 + (-16.7 + 7.79i)T \)
good2 \( 1 + (-3.64 - 2.10i)T + (4 + 6.92i)T^{2} \)
11 \( 1 + (50.2 - 28.9i)T + (665.5 - 1.15e3i)T^{2} \)
13 \( 1 - 47.9iT - 2.19e3T^{2} \)
17 \( 1 + (11.9 + 20.6i)T + (-2.45e3 + 4.25e3i)T^{2} \)
19 \( 1 + (116. + 67.2i)T + (3.42e3 + 5.94e3i)T^{2} \)
23 \( 1 + (-84.9 - 49.0i)T + (6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 + 57.6iT - 2.43e4T^{2} \)
31 \( 1 + (124. - 71.6i)T + (1.48e4 - 2.57e4i)T^{2} \)
37 \( 1 + (0.379 - 0.657i)T + (-2.53e4 - 4.38e4i)T^{2} \)
41 \( 1 + 518.T + 6.89e4T^{2} \)
43 \( 1 - 201.T + 7.95e4T^{2} \)
47 \( 1 + (-140. + 243. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + (-168. + 97.2i)T + (7.44e4 - 1.28e5i)T^{2} \)
59 \( 1 + (-244. - 423. i)T + (-1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (-159. - 91.8i)T + (1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (-452. - 783. i)T + (-1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 - 524. iT - 3.57e5T^{2} \)
73 \( 1 + (110. - 64.0i)T + (1.94e5 - 3.36e5i)T^{2} \)
79 \( 1 + (-120. + 208. i)T + (-2.46e5 - 4.26e5i)T^{2} \)
83 \( 1 + 607.T + 5.71e5T^{2} \)
89 \( 1 + (-436. + 756. i)T + (-3.52e5 - 6.10e5i)T^{2} \)
97 \( 1 - 1.29e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.49841015264979853683926714985, −12.94300247984890429462763897943, −11.66824585749359288223850880931, −10.26799346272087109841372211762, −8.639265676573550719753669010333, −7.37604219436964466879818049397, −6.88188493780785316420827004721, −5.01289426607482103350642135518, −4.02168219124569694515586715952, −2.36154920568173110419459021925, 2.14404990955209998774383314686, 3.36207381872411027417141431960, 4.68715483137897148579273590222, 5.57271367420706600678844806487, 8.016740952996146325648530323885, 8.560497314226886125477460005456, 10.47956329310996391028867536569, 11.01573219934608040061733286941, 12.56482454205194468308340850203, 13.04741370291818392031844606814

Graph of the $Z$-function along the critical line