Properties

Label 2-105-105.104-c3-0-39
Degree $2$
Conductor $105$
Sign $0.923 + 0.384i$
Analytic cond. $6.19520$
Root an. cond. $2.48901$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 4.45·2-s + (5.00 − 1.40i)3-s + 11.8·4-s + (−0.892 − 11.1i)5-s + (22.3 − 6.26i)6-s + (−12.5 + 13.5i)7-s + 17.3·8-s + (23.0 − 14.0i)9-s + (−3.98 − 49.7i)10-s + 30.2i·11-s + (59.4 − 16.6i)12-s − 18.9·13-s + (−56.1 + 60.5i)14-s + (−20.1 − 54.5i)15-s − 17.7·16-s − 4.59i·17-s + ⋯
L(s)  = 1  + 1.57·2-s + (0.962 − 0.270i)3-s + 1.48·4-s + (−0.0798 − 0.996i)5-s + (1.51 − 0.426i)6-s + (−0.680 + 0.733i)7-s + 0.766·8-s + (0.853 − 0.520i)9-s + (−0.125 − 1.57i)10-s + 0.830i·11-s + (1.43 − 0.401i)12-s − 0.404·13-s + (−1.07 + 1.15i)14-s + (−0.346 − 0.938i)15-s − 0.277·16-s − 0.0655i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.384i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.923 + 0.384i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(105\)    =    \(3 \cdot 5 \cdot 7\)
Sign: $0.923 + 0.384i$
Analytic conductor: \(6.19520\)
Root analytic conductor: \(2.48901\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{105} (104, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 105,\ (\ :3/2),\ 0.923 + 0.384i)\)

Particular Values

\(L(2)\) \(\approx\) \(4.18181 - 0.835405i\)
\(L(\frac12)\) \(\approx\) \(4.18181 - 0.835405i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-5.00 + 1.40i)T \)
5 \( 1 + (0.892 + 11.1i)T \)
7 \( 1 + (12.5 - 13.5i)T \)
good2 \( 1 - 4.45T + 8T^{2} \)
11 \( 1 - 30.2iT - 1.33e3T^{2} \)
13 \( 1 + 18.9T + 2.19e3T^{2} \)
17 \( 1 + 4.59iT - 4.91e3T^{2} \)
19 \( 1 - 119. iT - 6.85e3T^{2} \)
23 \( 1 - 134.T + 1.21e4T^{2} \)
29 \( 1 + 203. iT - 2.43e4T^{2} \)
31 \( 1 - 61.4iT - 2.97e4T^{2} \)
37 \( 1 + 337. iT - 5.06e4T^{2} \)
41 \( 1 + 135.T + 6.89e4T^{2} \)
43 \( 1 - 270. iT - 7.95e4T^{2} \)
47 \( 1 + 273. iT - 1.03e5T^{2} \)
53 \( 1 - 222.T + 1.48e5T^{2} \)
59 \( 1 + 735.T + 2.05e5T^{2} \)
61 \( 1 - 312. iT - 2.26e5T^{2} \)
67 \( 1 + 751. iT - 3.00e5T^{2} \)
71 \( 1 - 640. iT - 3.57e5T^{2} \)
73 \( 1 - 469.T + 3.89e5T^{2} \)
79 \( 1 - 126.T + 4.93e5T^{2} \)
83 \( 1 + 299. iT - 5.71e5T^{2} \)
89 \( 1 + 425.T + 7.04e5T^{2} \)
97 \( 1 - 561.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06370361269230155555423103267, −12.57338083110361695795904673432, −11.91504596328213735588265329085, −9.820955575217165899941302662369, −8.859067857033797956574406168052, −7.45614726055531238927235090368, −6.06745154699663780629773213986, −4.79008775481163472143562472847, −3.58982396938089421726851877261, −2.16096053655380782981472379989, 2.83984717382200889329322155849, 3.45973078575196744101385538748, 4.81411194618000206191756803811, 6.54296380179623035998268711131, 7.30876992386956143700977803449, 9.066915456968825513662746521072, 10.44740420884370581324912698619, 11.31608701942091804884161713618, 12.82696796475505774468757508126, 13.58846906890362612757256464267

Graph of the $Z$-function along the critical line