L(s) = 1 | − 2.24·2-s + (1.06 − 5.08i)3-s − 2.96·4-s + (−8.51 − 7.24i)5-s + (−2.39 + 11.4i)6-s + (−12.2 + 13.8i)7-s + 24.6·8-s + (−24.7 − 10.8i)9-s + (19.1 + 16.2i)10-s + 25.7i·11-s + (−3.16 + 15.0i)12-s + 68.2·13-s + (27.5 − 31.1i)14-s + (−45.9 + 35.5i)15-s − 31.5·16-s − 30.6i·17-s + ⋯ |
L(s) = 1 | − 0.793·2-s + (0.205 − 0.978i)3-s − 0.370·4-s + (−0.761 − 0.648i)5-s + (−0.162 + 0.776i)6-s + (−0.662 + 0.748i)7-s + 1.08·8-s + (−0.915 − 0.401i)9-s + (0.604 + 0.514i)10-s + 0.705i·11-s + (−0.0760 + 0.362i)12-s + 1.45·13-s + (0.526 − 0.594i)14-s + (−0.790 + 0.612i)15-s − 0.492·16-s − 0.437i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0658 - 0.997i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0658 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.206367 + 0.193191i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.206367 + 0.193191i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.06 + 5.08i)T \) |
| 5 | \( 1 + (8.51 + 7.24i)T \) |
| 7 | \( 1 + (12.2 - 13.8i)T \) |
good | 2 | \( 1 + 2.24T + 8T^{2} \) |
| 11 | \( 1 - 25.7iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 68.2T + 2.19e3T^{2} \) |
| 17 | \( 1 + 30.6iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 109. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 152.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 191. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 16.4iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 81.9iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 372.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 192. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 0.366iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 5.95T + 1.48e5T^{2} \) |
| 59 | \( 1 - 198.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 83.5iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 1.08e3iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 773. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 448.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 1.27e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 429. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 5.29T + 7.04e5T^{2} \) |
| 97 | \( 1 - 435.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.28771576996359969529335832569, −12.51948514830742715615852434694, −11.65868406565112284181143987077, −10.06235616436935404591717406705, −8.788266252105555696381740683663, −8.352908734388586034743896974783, −7.16319555457547866811757361560, −5.64624062037845153782838492788, −3.76079823473720293595491074884, −1.48970580128288132586034577057,
0.21607152127359058306803990742, 3.42538886038947228151673049278, 4.30797448049193326439737633023, 6.30208986379165146959652043030, 7.899941088126371927059810788698, 8.689232275360081658498019363291, 9.872375603291558275085051385323, 10.67708006761820712194288938802, 11.41173543469952145958636086155, 13.42566588052436120258093805008