Properties

Label 2-105-1.1-c9-0-21
Degree $2$
Conductor $105$
Sign $-1$
Analytic cond. $54.0787$
Root an. cond. $7.35382$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 38.2·2-s − 81·3-s + 949.·4-s + 625·5-s + 3.09e3·6-s + 2.40e3·7-s − 1.67e4·8-s + 6.56e3·9-s − 2.38e4·10-s + 4.05e4·11-s − 7.69e4·12-s − 3.27e4·13-s − 9.17e4·14-s − 5.06e4·15-s + 1.53e5·16-s − 5.20e5·17-s − 2.50e5·18-s − 5.19e5·19-s + 5.93e5·20-s − 1.94e5·21-s − 1.55e6·22-s + 7.45e5·23-s + 1.35e6·24-s + 3.90e5·25-s + 1.25e6·26-s − 5.31e5·27-s + 2.27e6·28-s + ⋯
L(s)  = 1  − 1.68·2-s − 0.577·3-s + 1.85·4-s + 0.447·5-s + 0.975·6-s + 0.377·7-s − 1.44·8-s + 0.333·9-s − 0.755·10-s + 0.835·11-s − 1.07·12-s − 0.317·13-s − 0.638·14-s − 0.258·15-s + 0.584·16-s − 1.51·17-s − 0.563·18-s − 0.913·19-s + 0.829·20-s − 0.218·21-s − 1.41·22-s + 0.555·23-s + 0.833·24-s + 0.200·25-s + 0.536·26-s − 0.192·27-s + 0.700·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(105\)    =    \(3 \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(54.0787\)
Root analytic conductor: \(7.35382\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 105,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
5 \( 1 - 625T \)
7 \( 1 - 2.40e3T \)
good2 \( 1 + 38.2T + 512T^{2} \)
11 \( 1 - 4.05e4T + 2.35e9T^{2} \)
13 \( 1 + 3.27e4T + 1.06e10T^{2} \)
17 \( 1 + 5.20e5T + 1.18e11T^{2} \)
19 \( 1 + 5.19e5T + 3.22e11T^{2} \)
23 \( 1 - 7.45e5T + 1.80e12T^{2} \)
29 \( 1 - 1.80e6T + 1.45e13T^{2} \)
31 \( 1 - 3.91e6T + 2.64e13T^{2} \)
37 \( 1 + 4.95e6T + 1.29e14T^{2} \)
41 \( 1 - 1.54e7T + 3.27e14T^{2} \)
43 \( 1 + 3.17e7T + 5.02e14T^{2} \)
47 \( 1 - 2.61e7T + 1.11e15T^{2} \)
53 \( 1 + 2.11e7T + 3.29e15T^{2} \)
59 \( 1 - 9.89e7T + 8.66e15T^{2} \)
61 \( 1 + 4.80e7T + 1.16e16T^{2} \)
67 \( 1 + 6.60e7T + 2.72e16T^{2} \)
71 \( 1 + 2.44e8T + 4.58e16T^{2} \)
73 \( 1 + 2.04e8T + 5.88e16T^{2} \)
79 \( 1 - 2.39e8T + 1.19e17T^{2} \)
83 \( 1 - 2.98e8T + 1.86e17T^{2} \)
89 \( 1 + 3.94e8T + 3.50e17T^{2} \)
97 \( 1 + 1.22e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.08364644976722190615750548594, −10.31261438288241028958616546826, −9.223764759778297997129570157734, −8.458496756352975908274367314594, −7.05065131223665426914380586676, −6.30167108342216378586000453329, −4.56603411669057536681134032591, −2.29880992150977619848151006470, −1.22948254764012627743126428457, 0, 1.22948254764012627743126428457, 2.29880992150977619848151006470, 4.56603411669057536681134032591, 6.30167108342216378586000453329, 7.05065131223665426914380586676, 8.458496756352975908274367314594, 9.223764759778297997129570157734, 10.31261438288241028958616546826, 11.08364644976722190615750548594

Graph of the $Z$-function along the critical line