L(s) = 1 | + (−0.309 + 0.951i)4-s + (−0.809 + 0.587i)5-s + (1.80 + 0.587i)7-s + (0.809 − 0.587i)9-s + (−0.309 − 0.951i)11-s + (−0.809 − 0.587i)16-s + (−0.690 + 0.951i)17-s + (0.309 + 0.951i)19-s + (−0.309 − 0.951i)20-s + 1.17i·23-s + (0.309 − 0.951i)25-s + (−1.11 + 1.53i)28-s + (−1.80 + 0.587i)35-s + (0.309 + 0.951i)36-s − 1.17i·43-s + 0.999·44-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)4-s + (−0.809 + 0.587i)5-s + (1.80 + 0.587i)7-s + (0.809 − 0.587i)9-s + (−0.309 − 0.951i)11-s + (−0.809 − 0.587i)16-s + (−0.690 + 0.951i)17-s + (0.309 + 0.951i)19-s + (−0.309 − 0.951i)20-s + 1.17i·23-s + (0.309 − 0.951i)25-s + (−1.11 + 1.53i)28-s + (−1.80 + 0.587i)35-s + (0.309 + 0.951i)36-s − 1.17i·43-s + 0.999·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.331 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.331 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.011225589\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.011225589\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.809 - 0.587i)T \) |
| 11 | \( 1 + (0.309 + 0.951i)T \) |
| 19 | \( 1 + (-0.309 - 0.951i)T \) |
good | 2 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 3 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 + (-1.80 - 0.587i)T + (0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (0.690 - 0.951i)T + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 - 1.17iT - T^{2} \) |
| 29 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + 1.17iT - T^{2} \) |
| 47 | \( 1 + (1.11 - 0.363i)T + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-1.11 + 1.53i)T + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.51716638731159475035146951768, −9.198608241933102518010538004359, −8.358708986598961914747556558341, −7.941692033838280110362612536553, −7.25824870409824046629302395546, −6.05309360147585951832195296621, −4.88277666701319250064485140216, −4.01018109915690361774245627949, −3.27676253265898877875472523749, −1.79974125629603895484407567238,
1.10269901584240731066200010138, 2.17532612982759790135681592626, 4.38912833790693122430251876095, 4.67497466134839374078109652980, 5.12876743556867126262837623481, 6.84197893935016528364593251708, 7.50719025279320017563468828050, 8.246901729422550879929990357377, 9.114832660421373135246338681309, 10.02960635231522908338192654219