Properties

Label 2-1045-1.1-c1-0-19
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $8.34436$
Root an. cond. $2.88866$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.39·2-s − 2.59·3-s + 3.74·4-s + 5-s + 6.22·6-s − 2.89·7-s − 4.19·8-s + 3.73·9-s − 2.39·10-s − 11-s − 9.72·12-s + 4.73·13-s + 6.93·14-s − 2.59·15-s + 2.56·16-s − 5.65·17-s − 8.94·18-s + 19-s + 3.74·20-s + 7.50·21-s + 2.39·22-s − 4.00·23-s + 10.8·24-s + 25-s − 11.3·26-s − 1.89·27-s − 10.8·28-s + ⋯
L(s)  = 1  − 1.69·2-s − 1.49·3-s + 1.87·4-s + 0.447·5-s + 2.53·6-s − 1.09·7-s − 1.48·8-s + 1.24·9-s − 0.758·10-s − 0.301·11-s − 2.80·12-s + 1.31·13-s + 1.85·14-s − 0.669·15-s + 0.640·16-s − 1.37·17-s − 2.10·18-s + 0.229·19-s + 0.838·20-s + 1.63·21-s + 0.511·22-s − 0.835·23-s + 2.22·24-s + 0.200·25-s − 2.22·26-s − 0.364·27-s − 2.05·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(8.34436\)
Root analytic conductor: \(2.88866\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
11 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 + 2.39T + 2T^{2} \)
3 \( 1 + 2.59T + 3T^{2} \)
7 \( 1 + 2.89T + 7T^{2} \)
13 \( 1 - 4.73T + 13T^{2} \)
17 \( 1 + 5.65T + 17T^{2} \)
23 \( 1 + 4.00T + 23T^{2} \)
29 \( 1 - 9.32T + 29T^{2} \)
31 \( 1 + 6.60T + 31T^{2} \)
37 \( 1 - 6.07T + 37T^{2} \)
41 \( 1 - 5.47T + 41T^{2} \)
43 \( 1 - 10.9T + 43T^{2} \)
47 \( 1 + 0.295T + 47T^{2} \)
53 \( 1 + 3.81T + 53T^{2} \)
59 \( 1 + 5.54T + 59T^{2} \)
61 \( 1 + 1.01T + 61T^{2} \)
67 \( 1 - 6.98T + 67T^{2} \)
71 \( 1 + 1.02T + 71T^{2} \)
73 \( 1 + 0.202T + 73T^{2} \)
79 \( 1 - 7.28T + 79T^{2} \)
83 \( 1 + 13.7T + 83T^{2} \)
89 \( 1 + 15.8T + 89T^{2} \)
97 \( 1 - 4.81T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.549681294916700164901128603519, −8.934289856729418910706133468694, −7.940648506323679562575967370187, −6.78980677918249161271724970366, −6.36370934179019048522105382055, −5.72780243667146431756540116883, −4.27756842017052577651789645402, −2.60532323274751192430795141756, −1.15756315766356415567357572527, 0, 1.15756315766356415567357572527, 2.60532323274751192430795141756, 4.27756842017052577651789645402, 5.72780243667146431756540116883, 6.36370934179019048522105382055, 6.78980677918249161271724970366, 7.940648506323679562575967370187, 8.934289856729418910706133468694, 9.549681294916700164901128603519

Graph of the $Z$-function along the critical line