| L(s) = 1 | − 3.09i·3-s + (−1.73 − 1.41i)5-s + 4.37·7-s − 6.58·9-s − 2.53i·11-s + (2.64 − 2.44i)13-s + (−4.37 + 5.36i)15-s + 1.29i·17-s − 5.36i·19-s − 13.5i·21-s − 1.80i·23-s + (0.999 + 4.89i)25-s + 11.0i·27-s − 7.58·29-s − 3.12i·31-s + ⋯ |
| L(s) = 1 | − 1.78i·3-s + (−0.774 − 0.632i)5-s + 1.65·7-s − 2.19·9-s − 0.763i·11-s + (0.733 − 0.679i)13-s + (−1.13 + 1.38i)15-s + 0.313i·17-s − 1.23i·19-s − 2.95i·21-s − 0.376i·23-s + (0.199 + 0.979i)25-s + 2.13i·27-s − 1.40·29-s − 0.561i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0621i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 + 0.0621i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.478973514\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.478973514\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (1.73 + 1.41i)T \) |
| 13 | \( 1 + (-2.64 + 2.44i)T \) |
| good | 3 | \( 1 + 3.09iT - 3T^{2} \) |
| 7 | \( 1 - 4.37T + 7T^{2} \) |
| 11 | \( 1 + 2.53iT - 11T^{2} \) |
| 17 | \( 1 - 1.29iT - 17T^{2} \) |
| 19 | \( 1 + 5.36iT - 19T^{2} \) |
| 23 | \( 1 + 1.80iT - 23T^{2} \) |
| 29 | \( 1 + 7.58T + 29T^{2} \) |
| 31 | \( 1 + 3.12iT - 31T^{2} \) |
| 37 | \( 1 - 2.55T + 37T^{2} \) |
| 41 | \( 1 - 7.89iT - 41T^{2} \) |
| 43 | \( 1 - 4.38iT - 43T^{2} \) |
| 47 | \( 1 - 6.20T + 47T^{2} \) |
| 53 | \( 1 - 6.19iT - 53T^{2} \) |
| 59 | \( 1 - 10.4iT - 59T^{2} \) |
| 61 | \( 1 - 3.58T + 61T^{2} \) |
| 67 | \( 1 + 2.55T + 67T^{2} \) |
| 71 | \( 1 + 0.295iT - 71T^{2} \) |
| 73 | \( 1 - 2.55T + 73T^{2} \) |
| 79 | \( 1 + 11.1T + 79T^{2} \) |
| 83 | \( 1 - 0.723T + 83T^{2} \) |
| 89 | \( 1 + 11.3iT - 89T^{2} \) |
| 97 | \( 1 - 12.2T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.924994819682110796321070965876, −8.470014658167782281367630839232, −7.78361900378949946588611353225, −7.37316537708266298563407568596, −6.11586419615174774194309788883, −5.38259495595440516344636623306, −4.27502553052422013828277058982, −2.82552218790330637387401457049, −1.53715173120383381371292275265, −0.72017572713467960964056173533,
2.02794997602795997338809477988, 3.62208007578404373301494864667, 4.08102545023462166094297386077, 4.92588912614534331374202265785, 5.71614240711988763824422915131, 7.15695226414944000580348359160, 8.036051929830782549346089248838, 8.726102778592732479079558575703, 9.597106159049414565635797855447, 10.48120165064662304739854933209