L(s) = 1 | + 2.26·3-s − i·5-s − 1.11i·7-s + 2.11·9-s − 5.37i·11-s + (−3.37 + 1.26i)13-s − 2.26i·15-s − 7.90i·19-s − 2.52i·21-s + 6.49·23-s − 25-s − 2·27-s + 3.63·29-s + 3.14i·31-s − 12.1i·33-s + ⋯ |
L(s) = 1 | + 1.30·3-s − 0.447i·5-s − 0.421i·7-s + 0.705·9-s − 1.62i·11-s + (−0.936 + 0.349i)13-s − 0.583i·15-s − 1.81i·19-s − 0.550i·21-s + 1.35·23-s − 0.200·25-s − 0.384·27-s + 0.675·29-s + 0.565i·31-s − 2.11i·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.349 + 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.349 + 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.293027421\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.293027421\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 + (3.37 - 1.26i)T \) |
good | 3 | \( 1 - 2.26T + 3T^{2} \) |
| 7 | \( 1 + 1.11iT - 7T^{2} \) |
| 11 | \( 1 + 5.37iT - 11T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 + 7.90iT - 19T^{2} \) |
| 23 | \( 1 - 6.49T + 23T^{2} \) |
| 29 | \( 1 - 3.63T + 29T^{2} \) |
| 31 | \( 1 - 3.14iT - 31T^{2} \) |
| 37 | \( 1 - 7.40iT - 37T^{2} \) |
| 41 | \( 1 + 4.75iT - 41T^{2} \) |
| 43 | \( 1 - 4.78T + 43T^{2} \) |
| 47 | \( 1 - 6.16iT - 47T^{2} \) |
| 53 | \( 1 - 0.292T + 53T^{2} \) |
| 59 | \( 1 - 11.3iT - 59T^{2} \) |
| 61 | \( 1 + 5.34T + 61T^{2} \) |
| 67 | \( 1 + 11.8iT - 67T^{2} \) |
| 71 | \( 1 + 3.43iT - 71T^{2} \) |
| 73 | \( 1 - 4.59iT - 73T^{2} \) |
| 79 | \( 1 - 10.8T + 79T^{2} \) |
| 83 | \( 1 - 7.40iT - 83T^{2} \) |
| 89 | \( 1 - 14.8iT - 89T^{2} \) |
| 97 | \( 1 + 3.76iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.306747459491350378294347767499, −9.017052950525213403665504918624, −8.282730337693134037581288513737, −7.42032360163221821551345554446, −6.59600358645890238999413439034, −5.27394671859625069334500011943, −4.38998616756423445305712676529, −3.19253837355735307458783699750, −2.59751823498744246156671535841, −0.898801915960010559854677642732,
1.93120336970853949022758509559, 2.64461066942963482326557218119, 3.66578773686151426631565460671, 4.70704040593572741343587210945, 5.81514872272525066745888227238, 7.10253466047483361015329330512, 7.59197311056111513998269121138, 8.395274569174891370428890809686, 9.360195797335540547941286110031, 9.848838394885805790668626878664