Properties

Label 2-1040-1.1-c5-0-12
Degree $2$
Conductor $1040$
Sign $1$
Analytic cond. $166.799$
Root an. cond. $12.9150$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s − 25·5-s + 244·7-s − 207·9-s − 794·11-s − 169·13-s + 150·15-s − 1.53e3·17-s − 2.70e3·19-s − 1.46e3·21-s + 702·23-s + 625·25-s + 2.70e3·27-s − 5.03e3·29-s + 3.63e3·31-s + 4.76e3·33-s − 6.10e3·35-s − 7.05e3·37-s + 1.01e3·39-s − 294·41-s − 7.61e3·43-s + 5.17e3·45-s + 3.02e3·47-s + 4.27e4·49-s + 9.20e3·51-s + 626·53-s + 1.98e4·55-s + ⋯
L(s)  = 1  − 0.384·3-s − 0.447·5-s + 1.88·7-s − 0.851·9-s − 1.97·11-s − 0.277·13-s + 0.172·15-s − 1.28·17-s − 1.71·19-s − 0.724·21-s + 0.276·23-s + 1/5·25-s + 0.712·27-s − 1.11·29-s + 0.679·31-s + 0.761·33-s − 0.841·35-s − 0.847·37-s + 0.106·39-s − 0.0273·41-s − 0.628·43-s + 0.380·45-s + 0.199·47-s + 2.54·49-s + 0.495·51-s + 0.0306·53-s + 0.884·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1040\)    =    \(2^{4} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(166.799\)
Root analytic conductor: \(12.9150\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1040,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.6866668734\)
\(L(\frac12)\) \(\approx\) \(0.6866668734\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + p^{2} T \)
13 \( 1 + p^{2} T \)
good3 \( 1 + 2 p T + p^{5} T^{2} \)
7 \( 1 - 244 T + p^{5} T^{2} \)
11 \( 1 + 794 T + p^{5} T^{2} \)
17 \( 1 + 1534 T + p^{5} T^{2} \)
19 \( 1 + 2706 T + p^{5} T^{2} \)
23 \( 1 - 702 T + p^{5} T^{2} \)
29 \( 1 + 5038 T + p^{5} T^{2} \)
31 \( 1 - 3634 T + p^{5} T^{2} \)
37 \( 1 + 7058 T + p^{5} T^{2} \)
41 \( 1 + 294 T + p^{5} T^{2} \)
43 \( 1 + 7618 T + p^{5} T^{2} \)
47 \( 1 - 3020 T + p^{5} T^{2} \)
53 \( 1 - 626 T + p^{5} T^{2} \)
59 \( 1 - 30066 T + p^{5} T^{2} \)
61 \( 1 + 5806 T + p^{5} T^{2} \)
67 \( 1 - 12436 T + p^{5} T^{2} \)
71 \( 1 + 4734 T + p^{5} T^{2} \)
73 \( 1 + 14694 T + p^{5} T^{2} \)
79 \( 1 - 39804 T + p^{5} T^{2} \)
83 \( 1 - 41776 T + p^{5} T^{2} \)
89 \( 1 - 7970 T + p^{5} T^{2} \)
97 \( 1 + 78050 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.834945395764177137171426962320, −8.290895801952060228896972838795, −7.77570929332915306402699522417, −6.72392575060461851190698536394, −5.46677290140701216010770929814, −4.99000218643274992665085454103, −4.20216526791850258268763601773, −2.61082377162410966326623638176, −1.95589493830920834519066076599, −0.34454725067831903876329595703, 0.34454725067831903876329595703, 1.95589493830920834519066076599, 2.61082377162410966326623638176, 4.20216526791850258268763601773, 4.99000218643274992665085454103, 5.46677290140701216010770929814, 6.72392575060461851190698536394, 7.77570929332915306402699522417, 8.290895801952060228896972838795, 8.834945395764177137171426962320

Graph of the $Z$-function along the critical line