L(s) = 1 | + (−1.36 + 0.366i)2-s + (2.36 − 1.36i)3-s + (1.73 − i)4-s + 0.267·5-s + (−2.73 + 2.73i)6-s + (−3 − 1.73i)7-s + (−1.99 + 2i)8-s + (2.23 − 3.86i)9-s + (−0.366 + 0.0980i)10-s + (1 + 1.73i)11-s + (2.73 − 4.73i)12-s + (2.59 + 2.5i)13-s + (4.73 + 1.26i)14-s + (0.633 − 0.366i)15-s + (1.99 − 3.46i)16-s + (−3.23 + 5.59i)17-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)2-s + (1.36 − 0.788i)3-s + (0.866 − 0.5i)4-s + 0.119·5-s + (−1.11 + 1.11i)6-s + (−1.13 − 0.654i)7-s + (−0.707 + 0.707i)8-s + (0.744 − 1.28i)9-s + (−0.115 + 0.0310i)10-s + (0.301 + 0.522i)11-s + (0.788 − 1.36i)12-s + (0.720 + 0.693i)13-s + (1.26 + 0.338i)14-s + (0.163 − 0.0945i)15-s + (0.499 − 0.866i)16-s + (−0.783 + 1.35i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.869 + 0.494i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.869 + 0.494i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.925430 - 0.244791i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.925430 - 0.244791i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 - 0.366i)T \) |
| 13 | \( 1 + (-2.59 - 2.5i)T \) |
good | 3 | \( 1 + (-2.36 + 1.36i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 0.267T + 5T^{2} \) |
| 7 | \( 1 + (3 + 1.73i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.23 - 5.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.36 + 4.09i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.09 - 1.90i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.59 - 1.5i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 1.26iT - 31T^{2} \) |
| 37 | \( 1 + (-3.86 - 6.69i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.03 - 0.598i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (8.19 + 4.73i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3.26iT - 47T^{2} \) |
| 53 | \( 1 + 9.92iT - 53T^{2} \) |
| 59 | \( 1 + (-3.73 + 6.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.866 + 0.5i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.36 - 9.29i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (11.0 + 6.36i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 1.73iT - 73T^{2} \) |
| 79 | \( 1 - 10.3T + 79T^{2} \) |
| 83 | \( 1 + 5.46T + 83T^{2} \) |
| 89 | \( 1 + (0.464 - 0.267i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.19 - 3i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.59509263533686157123620621092, −13.05059792210574494949632383366, −11.50531432009185398468195912661, −10.03075847834763098474882288151, −9.210672170272203953931233207164, −8.312494517281831210401192353994, −7.10000603151769069608768436595, −6.46623293715454287649065243745, −3.52620897108498128919421212588, −1.84456934600409734569245529865,
2.67635887257639481241164146880, 3.60904537023455496062226159296, 6.09494337762618281372472474993, 7.70288829964671435338272721127, 8.834357663926325852606602758190, 9.387903522833939650182598234837, 10.21773925016823290779750898896, 11.53580243323461198907142928328, 12.90546026095736527275861276390, 13.91341122191977101398786655249