L(s) = 1 | + (0.707 − 0.707i)2-s + (−1.53 − 0.796i)3-s − 1.00i·4-s + (−0.428 + 0.428i)5-s + (−1.65 + 0.524i)6-s + (0.538 − 0.538i)7-s + (−0.707 − 0.707i)8-s + (1.73 + 2.44i)9-s + 0.606i·10-s + (2.97 + 2.97i)11-s + (−0.796 + 1.53i)12-s − 0.761i·14-s + (1.00 − 0.317i)15-s − 1.00·16-s + 5.24·17-s + (2.95 + 0.507i)18-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (−0.888 − 0.459i)3-s − 0.500i·4-s + (−0.191 + 0.191i)5-s + (−0.673 + 0.214i)6-s + (0.203 − 0.203i)7-s + (−0.250 − 0.250i)8-s + (0.577 + 0.816i)9-s + 0.191i·10-s + (0.895 + 0.895i)11-s + (−0.229 + 0.444i)12-s − 0.203i·14-s + (0.258 − 0.0820i)15-s − 0.250·16-s + 1.27·17-s + (0.696 + 0.119i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.566 + 0.824i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.566 + 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.661213144\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.661213144\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (1.53 + 0.796i)T \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + (0.428 - 0.428i)T - 5iT^{2} \) |
| 7 | \( 1 + (-0.538 + 0.538i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.97 - 2.97i)T + 11iT^{2} \) |
| 17 | \( 1 - 5.24T + 17T^{2} \) |
| 19 | \( 1 + (-2.41 - 2.41i)T + 19iT^{2} \) |
| 23 | \( 1 + 1.86T + 23T^{2} \) |
| 29 | \( 1 + 8.70iT - 29T^{2} \) |
| 31 | \( 1 + (2.68 + 2.68i)T + 31iT^{2} \) |
| 37 | \( 1 + (-4.15 + 4.15i)T - 37iT^{2} \) |
| 41 | \( 1 + (-6.27 + 6.27i)T - 41iT^{2} \) |
| 43 | \( 1 - 1.95iT - 43T^{2} \) |
| 47 | \( 1 + (-5.73 - 5.73i)T + 47iT^{2} \) |
| 53 | \( 1 + 9.01iT - 53T^{2} \) |
| 59 | \( 1 + (-6.10 - 6.10i)T + 59iT^{2} \) |
| 61 | \( 1 + 8.13T + 61T^{2} \) |
| 67 | \( 1 + (-0.0740 - 0.0740i)T + 67iT^{2} \) |
| 71 | \( 1 + (-7.37 + 7.37i)T - 71iT^{2} \) |
| 73 | \( 1 + (-5.57 + 5.57i)T - 73iT^{2} \) |
| 79 | \( 1 + 13.5T + 79T^{2} \) |
| 83 | \( 1 + (-0.996 + 0.996i)T - 83iT^{2} \) |
| 89 | \( 1 + (-4.62 - 4.62i)T + 89iT^{2} \) |
| 97 | \( 1 + (-11.1 - 11.1i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.954110992608742502934172083823, −9.389185605122428194085198965133, −7.72800129710300564049947116037, −7.38197965393161075023712692919, −6.17496299408623218645912483341, −5.59371889243694879101020743078, −4.47905082472493799587064293626, −3.71567985962737581321678507712, −2.14674151347200486325235640368, −1.03637196412622043667808900088,
1.03993884516525700375301931835, 3.17107594599887901604432339178, 4.03204178762658620909374654829, 5.02543609114431231447655909654, 5.71054682218732585771024552020, 6.48916140434083865471529008095, 7.36836613181497867826562612124, 8.438312225317635902666141379589, 9.194432795652422128777281585211, 10.13670132256135831009595652819